Молюски открытый урок

Конус, площадь его поверхности и объем

Маслова В. А., г. Воронеж

(Открытый урок по геометрии в 11 классе)

“Проблемы нам создают не те вещи, которые мы не знаем, а те, о которых мы ошибочно полагаем, что знаем”

В. Роджерс

ЦЕЛЬ УРОКА: Систематизация и углубление знаний по теме “Конус”. Повысить интерес к геометрии, решая нестандартные задачи и отвечая на занимательные вопросы. Создание положительной внутренней мотивации обучения учащихся.

Ход урока.

I. Вопросы к классу с комментариями учителя:

Сегодня на уроке мы обобщим и систематизируем свои знания по теме “Конус”, повторим основные формулы и применим их при решении практических задач.

Вы должны были повторить основные понятия по теме и установить связь между картиной Шишкина “Корабельная роща” и геометрическим телом, которое называется “конус”. Кто из Вас нашел эту “связь”? (Учитель демонстрирует репродукцию картины).

Ответ: Конус в переводе с греческого языка означает “сосновая шишка”, а на картине изображен сосновый лес.

Фронтальная работа с классом по основным понятиям темы. Два ученика решают задачи на доске по карточкам.

Вопросы к классу:

Дайте определение конуса;

Какая поверхность называется конической;

Назовите элементы конуса и покажите их на чертеже;

Какой конус называется прямым?

Запишите формулы объема конуса, площади боковой и полной поверхности конуса.

Проверка задач, решенных учениками на доске:

Задача 1. Радиус основания конуса R. Осевым сечением является прямоугольный треугольник. Найти его площадь.

Задача 2. Осевым сечением конуса является равнобедренный прямоугольный треугольник, площадь которого 9 м2. Найти объем конуса.

Самостоятельная работа на 2 варианта с последующей проверкой (два ученика решают на закрытых досках).

Вариант I. Найдите высоту конуса, если его объем равен 48p см3, а радиус основания 4 см.

Вариант II. Найдите радиус основания конуса, если его объем равен 2,25p см3, а высота 3 см.

Решить задачу: Образующая конуса равна 18 см и наклонена к плоскости основания под углом 60° . Найдите площадь осевого сечения, площадь полной поверхности конуса и его объем.

II. Примените полученные знания на практике.

Комментарии учителя: Итак, Вы уже знаете как найти элементы конуса, его поверхность и объем, но сможете ли Вы применить их выходя на “вольный воздух”. Ведь куча щебня по краям шоссейной дороги также представляет предмет заслуживающий внимания. Посмотрев на рисунок 1, мы можем задать себе вопросы:

Какую площадь занимает щебень?[image]

Какова поверхность этой кучи щебня?

Каков её объем?

Задачи довольно сложные для человека, привыкшего преодолевать математические трудности только на бумаге или на классной доске. Ведь необходимо вычислить объем и поверхность конуса, высота и радиус которого не доступны для непосредственного измерения. Вопросы к классу:

Как найти радиус?

(измерить окружность основания и разделить на 6,28 = 2p );

Как найти образующую?

(определить две образующие: перекинув метровую ленту через

вершину кучи);

Как найти высоту?

(определить по теореме Пифагора).

Задача: Пусть окружность конической кучи щебня 12 м. Длина двух образующих – 4,6 м. Найти площадь поверхности кучи щебня и её объем.

Решение.

l = 4,6 / 2 = 2,3 м

r = 12,1 / 6,28 » 1,9 м

S = p *r*l = 3,14 * 1,9 * 2,3 = 13,7 м2

V = 1/3*p * r2* H = 1/3*3,14*1,92*[image]= 1/3*3,14*3,61*[image] = 1/3*3,14*3,61*[image]=1/3*3,14*3,61*1,3 » 4,9 м3

Комментарии учителя: При взгляде на коническую кучу щебня или песка мне вспоминается старинная легенда восточных народов, рассказанная у А.С. Пушкина в “Скупом рыцаре”. Послушайте её:

“Читал я где-то,

Что царь однажды воинам своим

Велел снести земли по горсти в кучу,-

И гордый холм возвысился,

И царь мог с высоты с весельем озирать

И дол, покрытый белыми шатрами,

И море, где бежали корабли”.

Какие ассоциации вызывают у Вас эти стихи?

Холм – конус.

Какого объема может быть этот холм?

Какой высоты мог быть этот холм?

На сколько километров может увеличиться панорама для наблюдения, поднявшегося с подножия холма к его вершине?

Давайте попытаемся ответить на эти вопросы и проанализировать этот текст (три ученика заранее подготовили ответ).

Первый ученик рассказывает. Это одна из тех немногих легенд, в которых при кажущемся правдоподобии нет и зерна правды. Дело в том, что если какой-нибудь древний деспот вздумал бы осуществить такую затею, то он был бы обескуражен мизерностью результата: перед ним высилась бы настолько жалкая кучка земли, что никакая фантазия не в силах была бы раздуть в легендарный, “гордый холм”. Сделаем примерный расчет: Старинные армии были не так многочисленны, как в наше время. У Аттилы было самое многочисленное войско, какое знал древний мир. Историки оценивают его в 700 тысяч человек.

Остановимся на этом числе, то есть примем, что холм составился из 700000 горстей. Захватите самую большую горсть земли и насыпьте в стакан: Вы не наполните его одной горстью. Все же примем, что горсть древнего воина равнялась одному стакану, примерно 1/5 литра или 1/5 куб. дм.

Определим объем холла: (1/5)*700 000 = 140000 куб. дм. = 140 куб. м. Значит холм представлял собой конус объемом не более 140 куб. м. Такой скромный объем уже разочаровывает.

Учитель: Но продолжим расчеты. Найдем высоту этого холма.

Второй ученик рассказывает: Чтобы определить высоту холма, нужно знать какой угол составляет образующая конуса с его основанием. В нашем случае можно принять его равным углу естественного откоса, то есть 45° (рис. 2). Более крупных склонов нельзя допустить, так как земля будет осыпаться. Остановившись на угле в 45° , рассмотрим треугольник АВС.

Высота такого конуса равна радиусу его основания. h = R ; V = 140 м3;

V = (1/3)*S*h = (1/3)*p *R2*h =

(1/3)*p *h3; 140 = (1/3)*p *h3;

p *h3 = 420; h3 » 133,76; h » 5,1 м.

В результате вычислений получили, что при объеме холма 140 м3, высота его составляет 5,1 м. Сомнительно, чтобы курган подробных размеров мог удовлетворять честолюбие Аттилы. С таких небольших возвышений легко было бы видеть дол, покрытый белыми шатрами, но обозревать море, было бы возможно только если дело происходило невдалеке от берега.

Учитель: Итак, ответили на один вопрос, но остается еще вопрос, возникший у нас : как далеко можно видеть с той или иной высоты?

Посмотрите на рисунок 3.

Третий ученик рассказывает. Ответим на вопрос, как велик радиус круга, в центре которого видим себя на ровной местности или на высоте. Задача сводится к вычислению длины отрезка СN касательной, проведенной из точки на уровне глаза наблюдателя к земной поверхности.

Пусть h – рост наблюдателя (внешний отрезок секущей); R – радиус Земли равный 6400 км. (h + 2R) – длина секущей CD, тогда СN2 = h*(h + 2R). Так как рост человека мал по сравнению с R, то h + 2R » 2R, следовательно СN2 = h*2R. Рост человека до глаз примерно h = 1,6 м или 0,0016 км, тогда СN = [image]= [image]= 80*[image] = 4,52 км.

Воздушные облака Земли искривляют путь лучей и горизонт отодвигает на 6%, тогда дальность видимости будет соответствовать 4,52*1,06 » 4,8 км, то есть на ровном месте человек видит не далее 4,8 км. Это гораздо меньше , чем обычно думают люди, которые описывают дальний простор степей, окидываемых взглядом.

Cходную ошибку делает А.С. Пушкин, говоря в “Скупом рыцаре” о далеком горизонте.

Мы нашли, что высота холма приблизительно 5 метров. Если наблюдатель встал на вершину конического холма, то глаз его возвысился бы

над почвой на 6.6 км. В этом случае дальность горизонта была бы равна [image]» 9 км. Это всего на 4 км больше того, чем можно видеть, стоя на ровной земле.

Подведем итог урока: Итак, Вы повторили, как находить элементы конуса, объем и поверхность его, применили свои знания в “геометрии на воздухе” и показали необходимость критически относится к текстам художественных произведений. Сегодня на уроке мы использовали тонкость и строгость математики при решении нестандартных задач. Надеюсь, что в дальнейшем теоретические знания, полученные на уроках геометрии, Вы сможете успешно использовать в различных жизненных ситуациях.

Список литературы





Похожие курсовые работы

1. Лингвистический анализ текста открытый урок

2. Закон и справедливость открытый урок

3. Понятия Закон и справедливость открытый урок

4. Открытый урок рубенс презентация в

5. Лирика лермонтова открытый урок

6. Открытый урок реакция ионного обмена презентация

7. Открытый урок Некрасов

8. Открытый урок лермонтов

9. Казахстан Открытый урок

10. Открытый урок Пушкин и Лермонтов

11. Открытый урок биография достоевского

12. Открытый урок культура Возрождения

13. Открытый урок речь и культура

14. Независимость Республики Казахстан Открытый урок

15. Открытый урок по литературе андрей белый

Курсовые работы, рефераты и доклады