Лекция 4
Энергия электромагнитного поля
4.1. Уравнение баланса энергии ЭМП.
4.2. Теорема Пойнтинга.
4.3. Некоторые примеры.
Любое реальное сообщение связано с передачей электромагнитной энергии. Чувствительность приемных устройств оценивается по той минимальной энергии, которой необходимо для того, чтобы эти устройства срабатывали.
Установим правило по которому можно рассчитывать энергию электромагнитного поля, если
® ® ® ®
известны Е и D, Н и В (векторные характеристики).
Уравнения Максвелла дают в целом полное описание уравнений. Любой акт проверки неизбежно связан с извлечением энергии ЭМП. Для сравнения экспериментальных и теоретических результатов ЭМП. Однако возникает вопрос о проверке этих необходимо связать энергию с напряженностью полей (векторные характеристики ЭМП).
4.1. Уравнение баланса энергии.
Баланс энергии ЭМП является следствием закона сохранения энергии для ЭМП. Выберем произвольный объем, ограниченный поверхностью S, внутри находятся источники ЭМП.
Р СТОР
S
V
Считаем, что мощность источников нам известна, обозначим ее Рст (сторонняя). Природа сторонних источников не рассматривается. Выясним, на какие процессы расходуется Рст :
1) Часть Рст преобразуется в другие виды энергии (тепло и т.д.). Это мощность Рпот.
2) Внутри V могут находиться элементы, которые запасают энергию. Для характеристики этих процессов вводится понятие плотности энергии ЭМП WЭМ, удельная мощность По всему объему:
РЭМ = o dV (4.1.1.)
V
РЭМ - мощность расходуемая на изменение накопленной внутри объема энергии ЭМП.
3) С ЭМП связаны процессы переноса энергии.
Эта часть Р называют излучаемой Ризл. Для характеристики таких процессов введем понятие плотности энергии переносимой ЭМП через единичную поверхность за единицу времени в перпендикулярном поверхности направлении. Эта величина получила название вектора Пойнтинга П и характеризует количество энергии переносимой через единичную площадку за единицу времени ^ поверхности:
®
П [Вт/м2]
Мощность излучения:
® ®
Ризл =