Астрономические основы календаря
Сутки как одна из основных единиц измерения времени. Вращение Земли и видимое движение звездного неба.
Основная величина для измерения времени связана с периодом полного оборота земного шара вокруг своей оси. До недавнего времени считалось, что вращение Земли происходит совершенно равномерно. Однако сейчас в этом вращении обнаружились некоторые неравномерности, но они столь малы, что не имеют значения для построения календаря. Находясь на поверхности Земли и участвуя вместе с нею в ее вращательном движении, мы не ощущаем его. О вращении земного шара вокруг оси мы судим лишь по тем видимым явлениям, которые с ним связаны. Следствием суточного вращения Земли является, например, видимое движение небесного свода со всеми находящимися на нем светилами: звездами, планетами, Солнцем, Луной и т. д. В наши дни для определения продолжительности одного оборота земного шара можно воспользоваться — специальным телескопом - пассажным инструментом, оптическая ось трубы которого вращается строго в одной плоскости — плоскости меридиана данного места, проходящей через точки юга и севера. Пересечение звездой меридиана называется верхней кульминацией. Промежуток времени между двумя последовательными верхними кульминациями звезды называется звездными сутками. Более точное определение звездных суток такое: это промежуток времени между двумя последовательными верхними кульминациями точки весеннего равноденствия. Они представляют собой одну из основных единиц измерения времени, так как продолжительность их остается неизменной. Звездные сутки делятся на 24 звездных часа, каждый час — на 60 звездных минут, каждая минута — на 60 звездных секунд. Звездные часы, минуты и секунды отсчитываются на звездных часах, которые имеются в каждой астрономической обсерватории и всегда показывают звездное время. Пользоваться в повседневной жизни такими часами неудобно, так как один и тот же звездный час в течение года приходится на различное время солнечных суток. Жизнь природы, а вместе с ней вся трудовая деятельность людей, связана не с движением звезд, а со сменой дня и ночи, т. е. с суточным движением Солнца. Поэтому в повседневной жизни мы пользуемся не звездным временем, а солнечным. Понятие солнечного времени значительно сложнее понятия звездного времени. Прежде всего надо ясно представить себе видимое движение Солнца.
Видимое годовое движение Солнца. Эклиптика.
Наблюдая из ночи в ночь за звездным небом, можно заметить, что в каждую последующую полночь кульминируют все новые и новые звезды. Это объясняется тем, что вследствие годового движения земного шара по орбите происходит движение Солнца среди звезд. Оно совершается в том же направлении, в каком вращается Земля, т. е. с запада на восток. Путь видимого движения Солнца среди звезд называется эклиптикой. Он представляет собой на небесной сфере большой круг, плоскость которого наклонена к плоскости небесного экватора под углом 23°27" и пересекается с небесным экватором в двух точках. Это точки весеннего и осеннего равноденствий. В первой из них Солнце бывает около 21 марта, когда оно переходит из южного небесного полушария в северное. Во второй точке оно находится около 23 сентября, когда переходит из северного полушария в южное. Зодиакальные созвездия. Двигаясь по эклиптике, Солнце в течение года последовательно перемещается среди следующих 12 созвездий, расположенных вдоль эклиптики и составляющих пояс зодиака. Видимое перемещение Солнца по зодиакальным созвездиям: Рыбы, Овен, Телец, Близнецы, Рак, Лев, Дева, Весы, Скорпион, Стрелец, Козерог и Водолей. (Строго говоря, Солнце проходит и через 13-е созвездие — Змееносец. Это созвездие было бы даже более правильно считать зодиакальным, чем такое созвездие, как Скорпион, в котором Солнце находится менее продолжительное время, чем в каждом из остальных созвездий.) Эти созвездия, названные зодиакальными, свое общее название получили от греческого слова «зоон» — животное, так как многие из них еще в глубокой древности были названы именами животных. В каждом из зодиакальных созвездий Солнце бывает в среднем около месяца. Поэтому еще в древности каждому месяцу соответствовал определенный знак зодиака. Март, например, был обозначен знаком Овна, так как в этом созвездии около двух тысяч лет назад находилась точка весеннего равноденствия и, следовательно, Солнце в марте проходило это созвездие.На рисунке видно, что когда Земля переместится по своей орбите и перейдет из положения III (март) в положение IV (апрель), то Солнце перейдет из созвездия Овна в созвездие Тельца, а когда Земля окажется в положении V (май), то Солнце из созвездия Тельца переместится в созвездие Близнецов и т. д.
Перемещение северного полюса мира среди звезд за 26 000 лет. Однако точка весеннего равноденствия не сохраняет неизменного положения на небесной сфере. Ее перемещение, открытое еще во II в. до н. э. греческим ученым Гиппархом, получило название прецессии, т. е. предварения равноденствия. Оно вызывается следующей причиной. Земля имеет форму не шара, а сфероида, сплюснутого у полюсов. На разные части сфероидальной Земли по-разному действуют силы притяжения от Солнца и Луны. Эти силы приводят к тому, что при одновременном вращении Земли и движении ее вокруг Солнца ось вращения Земли описывает конус около перпендикуляра к плоскости орбиты. Вследствие этого полюсы мира перемещаются среди звезд по малому кругу с центром в полюсе эклиптики, находясь от него на расстоянии около 231/2° . Вследствие прецессии точка весеннего равноденствия перемещается вдоль эклиптики к западу, т. е. навстречу видимому движению Солнца, на величину 50",3 в год. Поэтому полный круг она сделает примерно за 26 000 лет. По этой же причине северный полюс мира, находящийся в наше время вблизи Полярной звезды, 4000 лет назад находился вблизи Дракона, а через 12 000 лет будет вблизи Веги (a Лиры).
Солнечные сутки и солнечное время.
Истинные солнечные сутки. Если с помощью пассажного инструмента наблюдать не звезды, а Солнце и ежедневно отмечать время прохождения центра солнечного диска через меридиан, т. е. момент его верхней кульминации, то можно обнаружить, что промежуток времени между двумя верхними кульминациями центра солнечного диска, который называется истинными солнечными сутками, всегда оказывается длиннее звездных суток в среднем на 3 мин. 56 сек., или приблизительно на 4 мин. Это происходит от того, что Земля, обращаясь вокруг Солнца, совершает полный оборот вокруг него в течение года, т. е. приблизительно за 365 с четвертью суток. Отражая это движение Земли, Солнце за одни сутки перемещается примерно на 1/365 своего годового пути, или на величину около одного градуса, что соответствует четырем минутам времени. Однако в отличие от звездных суток истинные солнечные сутки периодически меняют свою продолжительность. Это вызывается двумя причинами: во-первых, наклоном плоскости эклиптики к плоскости небесного экватора, во-вторых, эллиптической формой орбиты Земли. Когда Земля находится на участке эллипса, расположенном ближе к Солнцу, то она движется быстрее; через полгода Земля окажется в противоположной части эллипса и будет перемещаться по орбите медленнее. Неравномерное движение Земли по своей орбите вызывает неравномерное видимое передвижение Солнца по небесной сфере: в разное время года Солнце перемещается с различной скоростью. Поэтому продолжительность истинных солнечных суток постоянно меняется. Так, например, 23 декабря, когда истинные сутки наиболее длинные, они на 51 сек. продолжительнее, чем 16 сентября, когда они всего короче. Средние солнечные сутки. Вследствие неравномерности истинных солнечных суток пользоваться ими в качестве единицы для измерения времени неудобно. Об этом хорошо знали около трехсот лет назад парижские часовщики, когда писали па своем цеховом гербе: «Солнце показывает время обманчиво». Все наши часы — наручные, стенные, карманные и другие — отрегулированы не по движению истинного Солнца, а по движению воображаемой точки, которая в течение года совершает один полный оборот вокруг Земли за такое же время, как и Солнце, но перемещается при этом по небесному экватору и совершенно равномерно. Называется такая точка средним солнцем. Момент прохождения среднего солнца через меридиан называют средним полднем, а промежуток времени между двумя последовательными средними полднями — средними солнечными сутками. Продолжительность их всегда одинакова. Их делят на 24 часа, каждый час среднего солнечного времени в свою очередь делится на 60 минут, а каждая минута — на 60 секунд среднего солнечного времени. Именно средние солнечные сутки, а не звездные сутки являются одной из основных единиц измерения времени, положенной в основу современного календаря. Разность между средним солнечным временем и истинным временем в один и тот же момент называется уравнением времени.
Астрономические основы календаря.
Мы знаем, что в основе всякого календаря лежат астрономические явления: смена дня и ночи, изменение лунных фаз и смена времен года. Эти явления дают три основные единицы измерения времени, лежащие в основе любой календарной системы, а именно: солнечные сутки, лунный месяц и солнечный год. Принимая средние солнечные сутки за величину постоянную, установим продолжительность лунного месяца и солнечного года. На протяжении всей истории астрономии продолжительность этих единиц измерения времени все время уточнялась.Синодический месяц.В основе лунных календарей лежит синодический месяц — промежуток времени между двумя последовательными одинаковыми фазами Луны. Первоначально, как уже известно, он определялся в 30 суток. Позже было установлено, что в лунном месяце 29,5 суток. В настоящее время средняя продолжительность синодического месяца принимается равной 29,530588 средних солнечных суток, или 29 суткам 12 часам 44 минутам 2,8 секунды среднего солнечного времени.Тропический год.Исключительно важное значение имело постепенное уточнение продолжительности солнечного года. В первых календарных системах год содержал 360 суток. Древние египтяне и китайцы около пяти тысяч лет назад определили длину солнечного года в 365 суток, а за несколько столетий до нашей эры как в Египте, так и в Китае продолжительность года была установлена в 365,25суток. В основу современного календаря положен тропический год — промежуток времени между двумя последовательными прохождениями центра Солнца через точку весеннего равноденствия. Определением точного значения величины тропического года занимались такие выдающиеся ученые, как П. Лаплас (1749-1827) в 1802 г., Ф. Бессель (1784—1846) в 1828 г., П. Ганзен (1795-1874) в 1853 г., У. Леверье (1811—1877) в 1858 г., и некоторые другие. Для определения продолжительности тропического года С. Ньюком предложил общую формулу: Т == 365,24219879 - 0,0000000614 (t - 1900), где t — порядковое число года. В октябре 1960 г. в Париже состоялась XI Генеральная конференция по мерам и весам, на которой была принята единая международная система единиц (СИ) и утверждено новое определение секунды как основной единицы времени, рекомендованное IX конгрессом Международного астрономического союза (Дублин, 1955 г.). В соответствии с принятым решением эфемеридная секунда определяется как 1/31556925,9747 часть тропического года для начала 1900 г. Отсюда легко определить величину тропического года: Т ==- 365 дней 5 час. 48 мин. 45,9747 сек. или Т = 365,242199 суток. Для календарных целей такая высокая точность не требуется. Поэтому, округляя до пятого десятичного знака, получим Т == 365,24220 суток. Такое округление величины тропического года дает ошибку в одни сутки за 100 000 лет. Поэтому принятая нами величина вполне может быть положена в основание всех календарных расчетов. Итак, ни синодический месяц, ни тропический год не содержат целого числа средних солнечных суток и, следовательно, все эти три величины несоизмеримы. Это значит, что невозможно достаточно просто выразить одну из этих величин через другую, т. е. нельзя подобрать некоторое целое число солнечных годов, в которых содержалось бы целое число лунных месяцев и целое число средних солнечных суток. Именно этим объясняется вся сложность календарной проблемы и вся та путаница, которая в течение многих тысячелетий царила в вопросе счисления больших промежутков времени.
Три рода календарей.
Стремление хотя бы до некоторой степени согласовать между собой сутки, месяц и год привело к тому, что в разные эпохи были созданы три рода календарей: солнечные, основанные на движении Солнца, в которых стремились согласовать между собою сутки и год; лунные (основанные па движении Луны) целью которых являлось согласование суток и лунного месяца; наконец, лунно-солнечные, в которых были сделаны попытки согласовать между собою все три единицы времени. В настоящее время почти все страны мира пользуются солнечным календарем. Лунный календарь играл большую роль в древних религиях. Он сохранился и до настоящего времени в некоторых восточных странах, исповедующих мусульманскую религию. В нем месяцы имеют по 29 и 30 дней, причем количество дней меняется с таким расчетом, чтобы первое число каждого следующего месяца совпадало с появления на небе «нового месяца». Годы лунного календаря содержат попеременно 354 и 355 дней. Таким образом, лунный год на 10—12 дней короче солнечного года. Лунно-солнечный календарь применяется в еврейской религии для расчета религиозных праздников, а также в государстве Израиль. Он отличается особой сложностью. Год в нем содержит 12 лунных месяцев, состоящих то из 29, то из 30 дней, но для учета движения Солнца периодически вводятся «високосные годы», содержащие добавочный, тринадцатый месяц. Простые, т. е. двенадцатимесячные годы, состоят из 353, 354 или 355 дней, а високосные, т. е. тринадцатимесячные, имеют по 383, 384 или 385 дней. Этим достигается то, что первое число каждого месяца почти точно совпадает с новолунием.
Список литературы
1. Прибор измерения земного притяжения на предметы
2. Прибор для измерения силы земного притяжения
3. Прибор которое измеряет действие земного притяжения
4. Прибор для измерения притяжения
5. Какой прибор измеряет силу земного притяжения
6. Какой прибор измеряет действия земного притяжения
7. Какой предмет измеряет действие земного притяжения
8. Чем измеряют действие земного притяжения на предметы
9. Каким прибором измеряют действие земного притяжения
10. Прибор для определения силы земного притяжения
11. Прибор измеряющий силу земного притяжения на предмет
13. Прибор для определения земного притяжения
14. Прибор измеряющий деиствие земного притяжения
15. Прибор определяющий направление земного притяжения