Органический мир океана

Органические вещества в водных системах Органический углерод

Органический углерод является наиболее надежным показателем суммарного содержания органических веществ в природных водах, на него приходится в среднем около 50% массы органических веществ.

Состав и содержание органических веществ в природных водах определяется совокупностью многих различных по своей природе и скорости процессов: посмертных и прижизненных выделений гидробионтов; поступления с атмосферными осадками, с поверхностным стоком в результате взаимодействия атмосферных вод с почвами и растительным покровом на поверхности водосбора; поступления из других водных объектов, из болот, торфяников; поступления с хозяйственно-бытовыми и промышленными сточными водами.

Концентрация органического углерода подвержена сезонным колебаниям, характер которых определяется гидрологическим режимом водных объектов и связанными с ним сезонными вариациями химического состава, временными изменениями интенсивности биологических процессов. В придонных слоях водоемов и поверхностной пленке содержание органического углерода может значительно отличаться от его содержания в остальной массе воды.

Органические вещества находятся в воде в растворенном, коллоидном и взвешенном состояниях, образующих некоторую динамическую систему, в общем неравновесную, в которой под воздействием физических, химических и биологических факторов непрерывно осуществляются переходы из одного состояния в другое.

Наименьшая концентрация углерода растворенных органических веществ в незагрязненных природных водах составляет около 1 мг/дм3, наибольшая обычно не превышает 10-20 мг/дм3, однако в болотных водах может достигать нескольких сотен мг/дм3.

Углеводороды (нефтепродукты)

Нефтепродукты относятся к числу наиболее распространенных и опасных веществ, загрязняющих поверхностные воды. Нефть и продукты ее переработки представляют собой чрезвычайно сложную, непостоянную и разнообразную смесь веществ (низко- и высокомолекулярные предельные, непредельные алифатические, нафтеновые, ароматические углеводороды, кислородные, азотистые, сернистые соединения, а также ненасыщенные гетероциклические соединения типа смол, асфальтенов, ангидридов, асфальтеновых кислот). Понятие "нефтепродукты" в гидрохимии условно ограничивается только углеводородной фракцией (алифатические, ароматические, алициклические углеводороды).

Большие количества нефтепродуктов поступают в поверхностные воды при перевозке нефти водным путем, со сточными водами предприятий нефтедобывающей, нефтеперерабатывающей, химической, металлургической и других отраслей промышленности, с хозяйственно-бытовыми водами. Некоторые количества углеводородов поступают в воду в результате прижизненных выделений растительными и животными организмами, а также в результате их посмертного разложения.

В результате протекающих в водоеме процессов испарения, сорбции, биохимического и химического окисления концентрация нефтепродуктов может существенно снижаться, при этом значительным изменениям может подвергаться их химический состав. Наиболее устойчивы ароматические углеводороды, наименее — н-алканы.

Нефтепродукты находятся в различных миграционных формах: растворенной, эмульгированной, сорбированной на твердых частицах взвесей и донных отложений, в виде пленки на поверхности воды. Обычно в момент поступления масса нефтепродуктов сосредоточена в пленке. По мере удаления от источника загрязнения происходит перераспределение между основными формами миграции, направленное в сторону повышения доли растворенных, эмульгированных, сорбированных нефтепродуктов. Количественное соотношение этих форм определяется комплексом факторов, важнейшими из которых являются условия поступления нефтепродуктов в водный объект, расстояние от места сброса, скорость течения и перемешивания водных масс, характер и степень загрязненности природных вод, а также состав нефтепродуктов, их вязкость, растворимость, плотность, температура кипения компонентов. При санитарно-химическом контроле определяют, как правило, сумму растворенных, эмульгированных и сорбированных форм нефти.

Содержание нефтепродуктов в речных, озерных, морских, подземных водах и атмосферных осадках колеблется в довольно широких пределах и обычно составляет сотые и десятые доли мг/дм3.

В незагрязненных нефтепродуктами водных объектах концентрация естественных углеводородов может колебаться в морских водах от 0,01 до 0,10 мг/дм3 и выше, в речных и озерных водах от 0,01 до 0,20 мг/дм3, иногда достигая 1-1,5 мг/дм3. Содержание естественных углеводородов определяется трофическим статусом водоема и в значительной мере зависит от биологической ситуации в водоеме.

Неблагоприятное воздействие нефтепродуктов сказывается различными способами на организме человека, животном мире, водной растительности, физическом, химическом и биологическом состоянии водоема. Входящие в состав нефтепродуктов низкомолекулярные алифатические, нафтеновые и особенно ароматические углеводороды оказывают токсическое и, в некоторой степени, наркотическое воздействие на организм, поражая сердечно-сосудистую и нервную системы. Наибольшую опасность представляют полициклические конденсированные углеводороды типа 3,4-бензапирена, обладающие канцерогенными свойствами. Нефтепродукты обволакивают оперение птиц, поверхность тела и органы других гидробионтов, вызывая заболевания и гибель.

Отрицательное влияние нефтепродуктов, особенно в концентрациях 0,001-10 мг/дм3, и присутствие их в виде пленки сказывается и на развитии высшей водной растительности и микрофитов.

В присутствии нефтепродуктов вода приобретает специфический вкус и запах, изменяется ее цвет, рН, ухудшается газообмен с атмосферой.

ПДКв нефтепродуктов составляет 0,3 мг/дм3 (лимитирующий показатель вредности — органолептический), ПДКвр — 0,05 мг/дм3 (лимитирующий показатель вредности — рыбохозяйственный). Присутствие канцерогенных углеводородов в воде недопустимо.

Метан

Метан принадлежит к газам биохимического происхождения. Основным источником его образования служат дисперсные органические вещества в породах. В чистом виде он иногда присутствует в болотах, образуясь при гниении болотной растительности. Этот газ в природных водах находится в молекулярно-дисперсном состоянии и не вступает с водой в химическое взаимодействие.

Бензол

Бензол представляет собой бесцветную жидкость с характерным запахом.

В поверхностные воды бензол поступает с предприятий и производств основного органического синтеза, нефтехимической, химико-фармацевтической промышленности, производства пластмасс, взрывчатых веществ, ионообменных смол, лаков и красок, искусственных кож, а также со сточными водами мебельных фабрик. В стоках коксохимических заводов бензол содержится в концентрациях 100-160 мг/дм3, в сточных водах производства капролактама — 100 мг/дм3, производства изопропилбензола — до 20000 мг/дм3. Источником загрязнения акваторий может быть транспортный флот (применяется в моторном топливе для повышения октанового числа). Бензол используется также в качестве ПАВ.

Бензол быстро испаряется из водоемов в атмосферу (период полуиспарения составляет 37,3 минуты при 20°С). Порог ощущения запаха бензола в воде составляет 0,5 мг/дм3 при 20°С. При 2,9 мг/дм3 запах характеризуется интенсивностью в 1 балл, при 7,5 мг/дм3 — в 2 балла. Мясо рыб приобретает неприятный запах при концентрации 10 мг/дм3. При 5 мг/дм3 запах исчезает через сутки, при 10 мг/дм3 интенсивность запаха за сутки снижается до 1 балла, а при 25 мг/дм3 запах снижается до 1 балла через двое суток.

Привкус при содержании бензола в воде 1,2 мг/дм3 измеряется в 1 балл, при 2,5 мг/дм3 — в 2 балла. Наличие в воде бензола (до 5 мг/дм3) не изменяет процессы биологического потребления кислорода, так как под влиянием биохимических процессов в воде бензол окисляется слабо. В концентрациях 5-25 мг/дм3 бензол не задерживает минерализации органических веществ, не влияет на процессы бактериального самоочищения водоемов.

В концентрации 1000 мг/дм3 бензол тормозит самоочищение разведенных сточных вод, а в концентрации 100 мг/дм3 - процесс очистки сточных вод в аэротенках. При содержании 885 мг/дм3 бензол сильно задерживает брожение осадка в метантенках.

При многократных воздействиях низких концентраций бензола наблюдаются изменения в крови и кроветворных органах, поражения центральной и периферической нервной системы, желудочно-кишечного тракта. Бензол классифицирован, как сильно подозреваемый канцероген. Основным метаболитом бензола является фенол. Бензол оказывает токсическое действие на гидробионты.

ПДКв — 0,5 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический), ПДКвр — 0,5 мг/дм3 (лимитирующий показатель вредности — токсикологический).

Фенолы

Фенолы представляют собой производные бензола с одной или несколькими гидроксильными группами. Их принято делить на две группы — летучие с паром фенолы (фенол, крезолы, ксиленолы, гваякол, тимол) и нелетучие фенолы (резорцин, пирокатехин, гидрохинон, пирогаллол и другие многоатомные фенолы).

Фенолы в естественных условиях образуются в процессах метаболизма водных организмов, при биохимическом распаде и трансформации органических веществ, протекающих как в водной толще, так и в донных отложениях.

Фенолы являются одним из наиболее распространенных загрязнений, поступающих в поверхностные воды со стоками предприятий нефтеперерабатывающей, сланцеперерабатывающей, лесохимической, коксохимической, анилинокрасочной промышленности и др. В сточных водах этих предприятий содержание фенолов может превосходить 10-20 г/дм3 при весьма разнообразных сочетаниях.

В поверхностных водах фенолы могут находиться в растворенном состоянии в виде фенолятов, фенолят-ионов и свободных фенолов. Фенолы в водах могут вступать в реакции конденсации и полимеризации, образуя сложные гумусоподобные и другие довольно устойчивые соединения. В условиях природных водоемов процессы адсорбции фенолов донными отложениями и взвесями играют незначительную роль.

В незагрязненных или слабозагрязненных речных водах содержание фенолов обычно не превышает 20 мкг/дм3.

Превышение естественного фона по фенолу может служить указанием на загрязнение водоемов. В загрязненных фенолами природных водах содержание их может достигать десятков и даже сотен микрограммов в 1 дм3. Фенолы — соединения нестойкие и подвергаются биохимическому и химическому окислению.

Простые фенолы подвержены главным образом биохимическому окислению. При концентрации более 1 мг/дм3 разрушение фенолов протекает достаточно быстро, убыль фенолов составляет 50-75% за трое суток, при концентрации несколько десятков микрограммов в 1 дм3 этот процесс замедляется, и убыль за то же время составляет 10-15%. Быстрее всех разрушается собственно фенол, медленнее крезолы, еще медленнее ксиленолы. Многоатомные фенолы разрушаются в основном путем химического окисления.

Концентрация фенолов в поверхностных водах подвержена сезонным изменениям. В летний период содержание фенолов падает (с ростом температуры увеличивается скорость распада).

Сброс фенольных вод в водоемы и водотоки резко ухудшает их общее санитарное состояние, оказывая влияние на живые организмы не только своей токсичностью, но и значительным изменением режима биогенных элементов и растворенных газов (кислорода, углекислого газа).

В результате хлорирования воды, содержащей фенолы, образуются устойчивые соединения хлорфенолов, малейшие следы которых (0,1 мкг/дм3) придают воде характерный привкус.

В токсикологическом и органолептическом отношении фенолы неравноценны. Летучие с паром фенолы более токсичны и обладают более интенсивным запахом при хлорировании. Наиболее резкие запахи дают простой фенол и крезолы.

ПДКв для фенола установлена 0,001 мг/дм3 (лимитирующий показатель вредности — органолептический), ПДКвр — 0,001 мг/дм3 (лимитирующий показатель вредности — рыбохозяйственный).

Гидрохинон

В поверхностные воды гидрохинон попадает со сточными водами производства пластмасс, кинофотоматериалов, красителей, предприятий нефтеперерабатывающей промышленности.

Гидрохинон является сильным восстановителем. Как и фенол, он обладает слабым дезинфицирующим действием. Гидрохинон не придает воде запаха, привкус появляется при концентрации несколько граммов в 1 дм3; пороговая концентрация по окраске воды составляет 0,2 мг/дм3, по влиянию на санитарный режим водоемов — 0,1 мг/дм3. Гидрохинон при содержании 100 мг/дм3 стерилизует воду, при 10 мг/дм3 - тормозит развитие сапрофитной микрофлоры. В концентрациях ниже 10 мг/дм3 гидрохинон подвергается окислению и стимулирует развитие водных бактерий. При концентрации 2 мг/дм3 гидрохинон тормозит нитрификацию разведенных сточных вод, 15 мг/дм3 — процесс их биологической очистки. Дафнии погибают при 0,3 мг/дм3; 0,04 мг/дм3 вызывают гибель икры форели.

В организме гидрохинон окисляется в п-бензохинон, который превращает гемоглобин в метгемоглобин.

ПДКв — 0,2 мг/дм3 (лимитирующий показатель вредности — органолептический), ПДКвр — 0,001 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический).

Спирты Метанол

Метанол попадает в водоемы со сточными водами производств получения и применения метанола. В сточных водах предприятий целлюлозно-бумажной промышленности содержится 4,5-58 г/дм3 метанола, производств фенолоформальдегидных смол — 20-25 г/дм3, лаков и красок 2 г/дм3, синтетических волокон и пластмасс — до 600 мг/дм3, в сточных водах генераторных станций работающих на буром, каменном угле, торфе, древесине — до 5 г/дм3.

При попадании в воду метанол снижает содержание в ней О2 (вследствие окисления метанола). Концентрация выше 4 мг/дм3 влияет на санитарный режим водоемов. При содержании 200 мг/дм3 наблюдается торможение биологической очистки сточных вод. Порог восприятия запаха метанола составляет 30-50 мг/дм3.

Концентрация 3 мг/дм3 стимулирует рост сине-зеленых водорослей и нарушает потребление кислорода дафниями. Летальные концентрации для рыб составляют 0,25-17 г/дм3.

Метанол является сильным ядом, обладающим направленным действием на нервную и сердечно-сосудистую системы, зрительные нервы, сетчатку глаз. Механизм действия метанола связан с его метаболизмом по типу летального синтеза с образованием формальдегида и муравьиной кислоты, далее окисляющихся до СО2. Поражение зрения обусловлено снижением синтеза АТФ в сетчатке глаза.

ПДКв — 3 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический), ПДКвр — 0,1 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический).

Этиленгликоль

Этиленгликоль попадает в поверхностные воды со сточными водами производств, где он получается или применяется (текстильная, фармацевтическая, парфюмерная, табачная, целлюлозно-бумажная промышленности).

Токсическая концентрация для рыб составляет не более 10 мг/дм3, для кишечной палочки — 0,25 мг/дм3.

Этиленгликоль очень токсичен. При попадании в желудок действует главным образом на ЦНС и почки, а также вызывает гемолиз эритроцитов. Токсичны и метаболиты этиленгликоля — альдегиды и щавелевая кислота, обусловливающая образование и накопление в почках оксалатов кальция.

ПДКв — 1,0 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический), ПДКвр — 0,25 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический).

Органические кислоты

Органические кислоты относятся к числу наиболее распространенных компонентов природных вод различного происхождения и нередко составляют значительную часть всего органического вещества в этих водах. Состав органических кислот и их концентрация определяются с одной стороны внутриводоемными процессами, связанными с жизнедеятельностью водорослей, бактерий и животных организмов, с другой — поступлением этих веществ извне.

Органические кислоты образуются за счет следующих внутриводоемных процессов:

прижизненных выделений в результате нормальных физиологических процессов здоровых клеток;

посмертных выделений, связанных с отмиранием и распадом клеток;

выделений сообществами, связанных с биохимическим взаимодействием различных организмов, например водорослей и бактерий;

ферментативного разложения высокомолекулярных органических веществ типа углеводородов, протеинов и липидов.

Поступление органических кислот в водные объекты извне возможно с поверхностным стоком, особенно в период половодья и паводков, с атмосферными осадками, промышленными и хозяйственно-бытовыми сточными водами и с водами, сбрасываемыми с орошаемых полей.

Данные о содержании и составе органических кислот необходимы при изучении процессов химического выветривания, миграции элементов, образования осадочных пород, а также при решении вопросов о взаимоотношении водных организмов со средой, поскольку органические кислоты служат одним из источников углерода и энергии для большинства этих организмов.

Концентрация органических кислот в речных водах колеблется от n·10 до n·102 ммоль/дм3. Амплитуда внутригодовых колебаний достигает нередко многих сотен процентов. Ряд высших жирных кислот присутствуют в природных водах в очень незначительных концентрациях. Концентрации пропионовой и уксусной кислот колеблются от n·10 до n·102 мкг/дм3.

Летучие кислоты

Под летучими кислотами понимают сумму концентраций муравьиной и уксусной кислот.

Муравьиная кислота

В природных водах в небольших количествах муравьиная кислота образуется в процессах жизнедеятельности и посмертного разложения водных организмов и биохимической трансформации содержащихся в воде органических веществ. Ее повышенная концентрация связана с поступлением в водные объекты сточных вод предприятий, производящих формальдегид и пластические массы на его основе.

Муравьиная кислота мигрирует главным образом в растворенном состоянии, в виде ионов и недиссоциированных молекул, количественное соотношение между которыми определяется константой диссоциации К25°С = 2,4.10-4 и значениями рН. При поступлении муравьиной кислоты в водные объекты она разрушается главным образом под влиянием биохимических процессов.

В незагрязненных речных и озерных водах муравьиная кислота обнаружена в концентрациях 0-830 мкг/дм3, в снеговых — 46-78 мкг/дм3, в грунтовых — до 235 мкг/дм3, в морских — до 680 мкг/дм3. Концентрация муравьиной кислоты подвержена заметным сезонным колебаниям, что определяется главным образом интенсивностью биохимических процессов, протекающих в воде.

ПДКв — 3,5 мг/дм3 (лимитирующий показатель вредности — общесанитарный), ПДКвр — 1,0 мг/дм3 (лимитирующий показатель вредности — токсикологический).

Уксусная кислота

ПДКв — 1,0 мг/дм3 (лимитирующий показатель вредности — общесанитарный), ПДКвр — 0,01 мг/дм3 (лимитирующий показатель вредности — токсикологический).

Пропионовая кислота

Пропионовая кислота может поступать в природные воды со стоками химической промышленности.

Пропионовая кислота способна ухудшать органолептические свойства воды, придавая ей запах и кисловато-вяжущий привкус. Наиболее существенным для пропионовой кислоты является неблагоприятное влияние на санитарный режим водоемов и в первую очередь на процессы БПК и кислородный режим. На полное биохимическое окисление 1 мг пропионовой кислоты затрачивается 1,21 -1,25 мг молекулярного кислорода.

ПДКвр — 0,6 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический).

Масляная кислота

ПДКв — 0,7 мг/дм3 (лимитирующий показатель вредности — общесанитарный).

Молочная кислота

В природных водах молочная кислота в микрограммовых концентрациях присутствует в результате образования в процессах жизнедеятельности и посмертного разложения водных организмов и биохимической трансформации содержащихся в воде органических веществ.

Молочная кислота находится в воде преимущественно в растворенном состоянии в виде ионов и недиссоциированнных молекул, количественное соотношение между которыми определяется константой диссоциации К25°С = 3.10-4 и зависит от рН среды. Молочная кислота частично мигрирует в виде комплексных соединений с тяжелыми металлами.

Концентрация молочной кислоты подвержена заметным сезонным изменениям, что определяется главным образом интенсивностью биохимических процессов, протекающих в воде.

Молочная кислота в незагрязненных поверхностных водах обнаруживалась в концентрациях от 0,1 до 0,4 мкг-экв/дм3.

ПДКв — 0,9 мг/дм3 (лимитирующий показатель вредности — общесанитарный).

Бензойная кислота

В незагрязненных природных водах бензойная кислота в небольших количествах образуется в процессах жизнедеятельности водных организмов и их посмертного разложения. Основным источником поступления больших количеств бензойной кислоты в водоемы являются стоки промышленных предприятий, так как бензойная кислота и различные ее производные широко используются при консервировании пищевых продуктов, в парфюмерной промышленности, для синтеза красителей и т.д.

Бензойная кислота хорошо растворима в воде, и содержание ее в поверхностных водах будет определяться концентрацией сбрасываемых сточных вод и скоростью биохимического окисления.

Токсичными свойствами бензойная кислота практически не обладает. Неблагоприятное действие ее на водоем связано с изменением кислородного режима и рН воды.

ПДКв — 0,6 мг/дм3 (лимитирующий показатель вредности — общесанитарный).

Гумусовые кислоты

Гуминовые и фульвокислоты, объединяемые под названием гумусовые кислоты, нередко составляют значительную долю органического вещества природных вод и представляют собой сложные смеси биохимически устойчивых высокомолекулярных соединений.

Главным источником поступления гумусовых кислот в природные воды являются почвы и торфяники, из которых они вымываются дождевыми и болотными водами. Значительная часть гумусовых кислот вносится в водоемы вместе с пылью и образуется непосредственно в водоеме в процессе трансформации "живого органического вещества".

Гумусовые кислоты в поверхностных водах находятся в растворенном, взвешенном и коллоидном состояниях, соотношения между которыми определяются химическим составом вод, рН, биологической ситуацией в водоеме и другими факторами.

Наличие в структуре фульво- и гуминовых кислот карбоксильных и фенолгидроксильных групп, аминогрупп способствует образованию прочных комплексных соединений гумусовых кислот с металлами. Некоторая часть гумусовых кислот находится в виде малодиссоциированных солей — гуматов и фульватов. В кислых водах возможно существование свободных форм гуминовых и фульвокислот.

Гумусовые кислоты в значительной степени влияют на органолептические свойства воды, создавая неприятный вкус и запах, затрудняют дезинфекцию и получение особо чистой воды, ускоряют коррозию металлов. Они оказывают влияние также на состояние и устойчивость карбонатной системы, ионные и фазовые равновесия и распределение миграционных форм микроэлементов. Повышенное содержание гумусовых кислот может оказывать отрицательное влияние на развитие водных растительных и животных организмов в результате резкого снижения концентрации растворенного кислорода в водоеме, идущего на их окисление, и их разрушающего влияния на устойчивость витаминов. В то же время при разложении гумусовых кислот образуется значительное количество ценных для водных организмов продуктов, а их органоминеральные комплексы представляют наиболее легко усваиваемую форму питания растений микроэлементами.

Почвенные кислоты: гуминовые (в щелочной среде) и особенно хорошо растворимые фульвокислоты играют наибольшую роль в миграции тяжелых металлов.

Гуминовые кислоты

Гуминовые кислоты содержат циклические структуры и различные функциональные группы (гидроксильные, карбонильные, карбоксильные, аминогруппы и др.). Молекулярная масса их колеблется в широком интервале (от 500 до 200 000 и более). Относительная молекулярная масса условно принимается равной 1300-1500.

Содержание гуминовых кислот в поверхностных водах обычно составляет десятки и сотни микрограммов в 1 дм3 по углероду, достигая нескольких миллиграммов в 1 дм3 в природных водах лесных и болотистых местностей, придавая им характерный бурый цвет. В воде многих рек гуминовые кислоты не обнаруживаются.

Фульвокислоты

Фульвокислоты являются частью гумусовых кислот, не осаждающихся при нейтрализации из раствора органических веществ, извлеченных из торфов и бурых углей обработкой щелочью. Фульвокислоты представляют соединения типа оксикарбоновых кислот с меньшим относительным содержанием углерода и более выраженными кислотными свойствами.

Хорошая растворимость фульвокислот по сравнению с гуминовыми кислотами является причиной их более высоких концентраций и распространения в поверхностных водах. Содержание фульвокислот, как правило, превышает содержание гуминовых кислот в 10 раз и более.

Азот органический

Под "органическим азотом" понимают азот, входящий в состав органических веществ, таких, как протеины и протеиды, полипептиды (высокомолекулярные соединения), аминокислоты, амины, амиды, мочевина (низкомолекулярные соединения).

Значительная часть азотсодержащих органических соединений поступает в природные воды в процессе отмирания организмов, главным образом фитопланктона, и распада их клеток. Концентрация этих соединений определяется биомассой гидробионтов и скоростью указанных процессов. Другим важным источником азотсодержащих органических веществ являются прижизненные их выделения водными организмами. К числу существенных источников азотсодержащих соединений относятся также атмосферные осадки, в которых концентрация азотсодержащих органических веществ близка к наблюдающейся в поверхностных водах. Значительное повышение концентрации этих соединений нередко связано с поступлением в водные объекты промышленных, сельскохозяйственных и хозяйственно-бытовых сточных вод.

На долю органического азота приходится 50-75% общего растворенного в воде азота. Концентрация органического азота подвержена значительным сезонным изменениям с общей тенденцией к увеличению в вегетационный период (1,5-2,0 мг/дм3) и уменьшению в период ледостава (0,2-0,5 мг/дм3). Распределение органического азота по глубине неравномерно — повышенная концентрация наблюдается, как правило, в зоне фотосинтеза и в придонных слоях воды.

Мочевина

Мочевина (карбамид), будучи одним из важных продуктов жизнедеятельности водных организмов, присутствует в природных водах в заметных концентрациях: до 10-50% суммы азотсодержащих органических соединений в пересчете на азот. Значительные количества мочевины поступают в водные объекты с хозяйственно-бытовыми сточными водами, с коллекторными водами, а также с поверхностным стоком в районах использования ее в качестве азотного удобрения. Карбамид может накапливаться в природных водах в результате естественных биохимических процессов как продукт обмена веществ водных организмов, продуцироваться растениями, грибами, бактериями как продукт связывания аммиака, образующегося в процессе диссимиляции белков. Значительное влияние на концентрацию мочевины оказывают внеорганизменные ферментативные процессы. Под действием ферментов происходит распад мононуклеотидов отмерших организмов с образованием пуриновых и пиримидиновых оснований, которые в свою очередь распадаются за счет микробиологических процессов до мочевины и аммиака. Под действием специфического фермента (уреазы) мочевина распадается до аммонийного иона и потребляется водными растительными организмами.

Повышение концентрации мочевины может указывать на загрязнение водного объекта сельскохозяйственными и хозяйственно-бытовыми сточными водами. Оно обычно сопровождается активизацией процессов утилизации мочевины водными организмами и потреблением кислорода, приводящего к ухудшению кислородного режима.

В речных незагрязненных водах концентрация мочевины колеблется в пределах 60-300 мкг/дм3, или в пересчете на азот 30-150 мкг/дм3, в водохранилищах и озерах — от 40 до 250 мкг/дм3. Наиболее высокая концентрация ее обнаруживается в пробах, отобранных в летне-осенний период (июль-сентябрь).

ПДКвр — 80 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический).

Амины

К основным источникам образования и поступления в природные воды аминов следует отнести:

декарбоксилирование при распаде белковых веществ под воздействием декарбоксилаз бактерий и грибов и аминирование;

водоросли;

атмосферные осадки;

сточные воды анилино-красочных предприятий.

Амины присутствуют преимущественно в растворенном и отчасти в сорбированном состоянии. С некоторыми металлами они могут образовывать довольно устойчивые комплексные соединения.

Концентрация аминов в воде рек, водохранилищ, озер, атмосферных осадках колеблется в пределах 10 — 200 мкг/дм3. Более низкое содержание характерно для малопродуктивных водных объектов.

Амины токсичны. Обычно принято считать, что первичные алифатические амины токсичнее вторичных и третичных, диамины токсичнее моноаминов; изомерные алифатические амины более токсичны, чем алифатические амины нормального строения; моноамины с большей вероятностью обладают гепатотоксичностью, а диамины — нефротоксичностью. Наибольшей токсичностью и потенциальной опасностью среди алифатических аминов характеризуются непредельные амины из-за наиболее выраженной у них способности угнетать активность аминооксидаз.

Амины, присутствуя в водных объектах, отрицательно влияют на органолептические свойства воды, могут усугублять заморные явления.

ПДКв для различных видов аминов — от 0,01 до 170 мг/дм3.

Анилин

Анилин относится к ароматическим аминам и представляет собой бесцветную жидкость с характерным запахом.

В поверхностные воды анилин может поступать со сточными водами химических (получение красителей и пестицидов) и фармацевтических предприятий.

Анилин обладает способностью окислять гемоглобин в метгемоглобин. <P

ПДКв — 0,1 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический), ПДКвр — 0,0001 мг/дм3 (лимитирующий показатель вредности — токсикологический).

Уротропин

Гексаметилентетрамин — (CH2)6N4

ПДКв — 0,5 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический).

Нитробензол

Нитробензол — бесцветная или зеленовато-желтая маслянистая жидкость с запахом горького миндаля.

Нитробензол токсичен, проникает через кожу, оказывает сильное действие на центральную нервную систему, нарушает обмен веществ, вызывает заболевания печени, окисляет гемоглобин в метгемоглобин.

ПДКв — 0,2 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический), ПДКвр — 0,01 мг/дм3 (лимитирующий показатель вредности — токсикологический)

Сера органическая Метилмеркаптан

Метилмеркаптан является продуктом метаболизма живых клеток. Он также поступает со стоками предприятий целлюлозной промышленности (0,05 — 0,08 мг/дм3).

В водном растворе метилмеркаптан является слабой кислотой и частично диссоциирует (степень диссоциации зависит от рН среды). При рН 10,5 50% метилмеркаптана находится в ионной форме, при рН 13 происходит полная диссоциация. Метилмеркаптан стабилен менее 12 часов, образует соли — меркаптиды.

ПДКв — 0,0002 мг/дм3 (лимитирующий показатель вредности — органолептический).

Диметилсульфид

Диметилсульфид выделяется водорослями (Oedogonium, Ulothrix) в ходе нормальных физиологических процессов, имеющих существенное значение в круговороте серы. В поверхностные воды диметилсульфид может поступать также со стоками предприятий целлюлозной промышленности (0,05 — 0,08 мг/дм3).

Концентрация диметилсульфида в морях достигает n·10-5 мг/дм3 (повышенное содержание наблюдается в местах скопления водорослей).

Диметилсульфид не может долго сохраняться в воде водоемов (стабилен от 3 до 15 суток). Он частично подвергается превращениям при участии водорослей и микроорганизмов, а в основном испаряется в воздух.

В концентрациях 1-10 мкг/дм3 диметилсульфид обладает слабой мутагенной активностью.

ПДКв — 0,01 мг/дм3 (лимитирующий показатель вредности — органолептический), ПДКвр — 0,00001 мг/дм3 (лимитирующий показатель вредности —токсикологический).

Диметилдисульфид

Диметилдисульфид образуется в клетках различных представителей флоры и фауны в ходе метаболизма сераорганических соединений, а также может поступать со стоками предприятий целлюлозной промышленности.

ПДКв — 0,04 мг/дм3 (лимитирующий показатель вредности — органолептический), ПДКвр — 0,00001 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический).

Карбонильные соединения

К карбонильным относятся соединения, содержащие карбонильные и карбоксильные группы (альдегиды, кетоны, кетокислоты, полуфункциональные карбонилсодержащие вещества).

В природных водах карбонильные соединения могут появляться в результате прижизненных выделений водорослей, биохимического и фотохимического окисления спиртов и органических кислот, распада органических веществ типа лигнина, обмена веществ бактериобентоса. Постоянное присутствие карбонильных соединений среди кислородных соединений нефти и в воде, контактирующей с залежами углеводородов, позволяет рассматривать последние в качестве одного из источников обогащения природных вод этими веществами. Источником карбонильных соединений являются также наземные растения, в которых образуются альдегиды и кетоны алифатического ряда и фурановые производные. Значительная часть альдегидов и кетонов поступает в природные воды в результате деятельности человека.

Основными факторами, обусловливающими уменьшение концентрации карбонильных соединений, являются их способность к окислению, летучесть и относительно высокая трофическая ценность отдельных групп карбонилсодержащих веществ.

В поверхностных водах карбонильные соединения находятся в основном в растворенной форме. Средняя концентрация их в воде рек и водохранилищ колеблется от 1 до 6 мкмоль/дм3, несколько выше она (6-40 мкмоль/дм3) в озерах дистрофного типа. Максимальные концентрации в водах нефтяных и газонефтяных залежей — 40-100 мкмоль/дм3.

В воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования нормируются отдельные соединения с карбонильной группой: циклогексанон ПДКв — 0,2 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический), формальдегид ПДКв — 0,05 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический).

Ацетон

В природные воды ацетон поступает со сточными водами фармацевтических, лесохимических производств, производства лаков и красок, пластмасс, кинопленки, ацетилена, ацетальдегида, уксусной кислоты, оргстекла, фенола, ацетона.

В концентрациях 40-70 мг/дм3 ацетон придает воде запах, 80 мг/дм3 — привкус. В воде ацетон малостабилен — при концентрациях 20 мг/дм3 на седьмые сутки исчезает.

Для водных организмов ацетон сравнительно малотоксичен. Токсические концентрации для молодых дафний составляют 8300, для взрослых - 12900 мг/дм3; при 9300 мг/дм3 дафнии гибнут через 16 часов.

Ацетон — наркотик, поражающий все отделы ЦНС. Кроме того, он оказывает эмбриотоксическое действие.

ПДКв — 2,2 мг/дм3 (лимитирующий показатель вредности — общесанитарный), ПДКвр — 0,05 мг/дм3 (лимитирующий показатель вредности — токсикологический).

Формальдегид

Формальдегид поступает в водную среду с промышленными и коммунальными сточными водами. Он содержится в сточных водах производств основного органического синтеза, пластмасс, лаков, красок, лекарственных препаратов, предприятий кожевенной, текстильной и целлюлозно-бумажной промышленности.

В дождевой воде городских районов зарегистрировано присутствие формальдегида. Формальдегид — сильный восстановитель. Он конденсируется с аминами, с аммиаком образует уротропин. В водной среде формальдегид подвергается биодеградации. В аэробных условиях при 20°С разложение продолжается около 30 часов, в анаэробных — примерно 48 часов. В стерильной воде формальдегид не разлагается. Биодеградация в водной среде обусловлена действием Pseudomonas, Flavobacterium, Mycobacterium, Zanthomonas.

Подпороговая концентрация, не влияющая на санитарный режим водоемов и сапрофитную микрофлору, составляет 5 мг/дм3; максимальная концентрация, не вызывающая при постоянном воздействии в течение сколь угодно длительного времени нарушение биохимических процессов, - 5 мг/дм3, максимальная концентрация, не влияющая на работу биологических очистных сооружений, - 1000 мг/дм3.

БПК5 = 0,68 мг/дм3, БПКполн = 0,72 мг/дм3, ХПК = 1,07 мг/дм3. Запах ощущается при 20 мг/дм3.

При 10 мг/дм3 формальдегид оказывает токсическое действие на наиболее чувствительные виды рыб. При 0,24 мг/дм3 ткани рыб приобретают неприятный запах.

Формальдегид оказывает общетоксическое действие, вызывает поражение ЦНС, легких, печени, почек, органов зрения. Возможно кожно-резорбтивное действие. Формальдегид обладает раздражающим, аллергенным, мутагенным, сенсибилизирующим, канцерогенным действием.

ПДКв — 0,05 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический), ПДКвр — 0,25 мг/дм3 (лимитирующий показатель вредности — токсикологичекий).

Углеводы

Под углеводами понимают группу органических соединений, которая объединяет моносахариды, их производные и продукты конденсации — олигосахариды и полисахариды. В поверхностные воды углеводы поступают главным образом вследствие процессов прижизненного выделения водными организмами и их посмертного разложения. Значительные количества растворенных углеводов попадают в водные объекты с поверхностным стоком в результате вымывания их из почв, торфяников, горных пород, с атмосферными осадками, со сточными водами дрожжевых, пивоваренных, сахарных, целлюлозно-бумажных и других заводов.

В поверхностных водах углеводы находятся в растворенном и взвешенном состоянии в виде свободных редуцирующих сахаров (смесь моно, ди- и трисахаридов) и сложных углеводов.

Концентрация в речных водах свободных редуцирующих сахаров и сложных углеводов в пересчете на глюкозу составляет 100-600 и 250-1000 мкг/дм3. В воде водохранилищ концентрация их соответственно равна 100-400 и 200-300 мкг/дм3, в воде озер пределы возможных концентраций редуцирующих сахаров 80-65000 мкг/дм3 и сложных углеводов 140-6900 мкг/дм3 — более широки, чем в реках и водохранилищах. В морских водах суммарная концентрация углеводов составляет 0-8 мг/дм3, в атмосферных осадках 0-4 мг/дм3. Наблюдается корреляция между содержанием углеводов и интенсивностью развития фитопланктона.

Литература:

"Гидрохимические показатели состояния окружающей среды". Авторы:   Т.В.Гусева, Я.П.Молчанова, Е.А.Заика, В.Н.Виниченко, Е.М.Аверочкин





Похожие курсовые работы

1. Нефтяное загрязнение мирового океана презентация

2. Обитатели мирового океана

3. Презентация о рельефе дна мирового океана

4. На тему Загрязнение мирового океана и ее охрана

5. Презентация о загрезнение мирового океана

6. Проблемы мирового океана в картинках

7. Животные мирового океана

8. К бассейну какого океана принадлежит река амур

9. Рельеф дна индийского океана презентация

10. На тему древние обитатели океана

11. Обитатели тихого океана

12. На тему открытие индийского океана

13. СТИХИЯ ОКЕАНА

14. Секторальная структура мирового хозяйства

15. Территориальная структура мирового хозяйства

Курсовые работы, рефераты и доклады