1. Рассчитайте параметры сетевого графа
12
6
3
4
5
16
1
3
5
4
6
10
8
3
9
10
7
8
6
4
5
2
1
3
0
4
Работа i, j | Продол. |
| Полный резерв | Свободн. резерв |
(0, 1) | 10 | 0 | 10 | 5 | 15 | 5 | 5 |
(0, 2) | 8 | 0 | 8 | 0 | 8 | 0К | 0 |
(0, 3) | 3 | 0 | 3 | 6 | 9 | 0 | 0 |
(1, 5) | 3 | 10 | 13 | 15 | 18 | 5 | 5 |
(2, 4) | 4 | 8 | 12 | 9 | 13 | 1 | 1 |
(2, 6) | 6 | 8 | 14 | 8 | 14 | 0К | 0 |
(3, 6) | 5 | 3 | 8 | 9 | 14 | 6 | 6 |
(4, 5) | 1 | 12 | 13 | 17 | 18 | 5 | 5 |
(4, 10) | 16 | 12 | 28 | 11 | 27 | -1 | -1 |
(5, 7) | 5 | 13 | 18 | 18 | 23 | 5 | 5 |
(6, 8) | 4 | 14 | 18 | 14 | 18 | 0К | 0 |
(6, 10) | 12 | 14 | 26 | 15 | 27 | 1 | 1 |
(7, 10) | 4 | 18 | 22 | 23 | 27 | 5 | 5 |
(8, 9) | 6 | 18 | 24 | 18 | 24 | 0К | 0 |
(9, 10) | 3 | 24 | 27 | 24 | 27 | 0К | 0 |
К – критические операции
Продолжительность критического пути: 8 + 6 + 4 + 6 + 3 = 27
2. Оценить с достоверностью 90% оптимистичный
и пессимистичный срок завершения работ.
Эксперты |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
6 | 7 | 6 | 5 | 4 | 4 | 4 | 5 | 6 | 6 | 6 | 4 | 4 | 8 | 10 | 3 | 4 | 4 | 5 | 6 |
Упорядочиваем по возрастанию:
10, 8, 7, 6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3
Отбрасываем первые два значения и находим Qопт:
Qопт = 89 / 18 = 4,94
Упорядочиваем по убыванию и аналогично находим Qпес:
Qпес = 100 / 18 = 5,55
Находим Qср:
Qср = 107 / 20 = 5,35
Отклонение Qопт от Qср – 7,6%; Qпес от Qср – 3,7%. Оба значения в пределах 10%, таким образом достоверность 90% обеспечена.
3. Рассчитать требуемое количество экспертов, при котором влияние
1 эксперта на среднюю оценку составляет не более x = 9%.
Пробная оценка x + 1 экспертов:
6, 7, 6, 5, 4, 4, 4, 5, 6, 6
х = 9% => 0,91 ? E ? 1,09
Qср = 53 / 10 = 5,3
b = 10
T =