Кросворд на темы клетка

Клетка

Клетка, элементарная единица живого. Клетка отграничена от других клеток или от внешней среды специальной мембраной и имеет ядро или его эквивалент, в котором сосредоточена основная часть химической информации, контролирующей наследственность. Изучением строения клетки занимается цитология, функционированием – физиология. Наука, изучающая состоящие из клеток ткани, называется гистологией.

Существуют одноклеточные организмы, тело которых целиком состоит из одной клетки. К этой группе относятся бактерии и протисты (простейшие животные и одноклеточные водоросли). Иногда их также называют бесклеточными, но термин одноклеточные употребляется чаще. Настоящие многоклеточные животные (Metazoa) и растения (Metaphyta) содержат множество клеток.

Абсолютное большинство тканей состоит из клеток, однако имеются и некоторые исключения. Тело слизевиков (миксомицетов), например, состоит из однородной, не разделенной на клетки субстанции с многочисленными ядрами. Сходным образом организованы и некоторые животные ткани, в частности сердечная мышца. Вегетативное тело (таллом) грибов образовано микроскопическими нитями – гифами, нередко сегментированными; каждая такая нить может считаться эквивалентом клетки, хотя и нетипичной формы.

Некоторые не участвующие в метаболизме структуры тела, в частности раковины, жемчужины или минеральная основа костей, образованы не клетками, а продуктами их секреции. Другие, например древесина, кора, рога, волосы и наружный слой кожи, – не секреторного происхождения, а образованы из мертвых клеток.

Мелкие организмы, такие, как коловратки, состоят всего из нескольких сотен клеток. Для сравнения: в человеческом организме насчитывается ок. 1014 клеток, в нем каждую секунду погибают и замещаются новыми 3 млн. эритроцитов, и это всего одна десятимиллионная часть от общего количества клеток тела.

Обычно размеры растительных и животных клеток колеблются в пределах от 5 до 20 мкм в поперечнике. Типичная бактериальная клетка значительно меньше – ок. 2 мкм, а наименьшая из известных – 0,2 мкм.

Некоторые свободноживущие клетки, например такие простейшие, как фораминиферы, могут достигать нескольких сантиметров; они всегда имеют много ядер. Клетки тонких растительных волокон достигают в длину одного метра, а отростки нервных клеток достигают у крупных животных нескольких метров. При такой длине объем этих клеток небольшой, а поверхность очень велика.

Самые крупные клетки – это неоплодотворенные яйца птиц, заполненные желтком. Наибольшее яйцо (и, следовательно, наибольшая клетка) принадлежало вымершей громадной птице – эпиорнису (Aepyornis). Предположительно его желток весил ок. 3,5 кг. Самое крупное яйцо у ныне живущих видов принадлежит страусу, его желток весит ок. 0,5 кг.

Как правило, клетки крупных животных и растений лишь немногим больше клеток мелких организмов. Слон больше мыши не потому, что его клетки крупнее, а в основном потому, что самих клеток значительно больше. Существуют группы животных, например коловратки и нематоды, у которых количество клеток в организме остается постоянным. Таким образом, хотя крупные виды нематод имеют большее количество клеток, чем мелкие, основное различие в размерах обусловлено в этом случае все же большими размерами клеток.

В пределах данного типа клеток их размеры обычно зависят от плоидности, т.е. от числа наборов хромосом, присутствующих в ядре. Тетраплоидные клетки (с четырьмя наборами хромосом) в 2 раза больше по объему, чем диплоидные клетки (с двойным набором хромосом). Плоидность растения можно увеличить путем введения в него растительного препарата колхицина. Поскольку подвергнутые такому воздействию растения имеют более крупные клетки, они и сами крупнее. Однако это явление можно наблюдать только на полиплоидах недавнего происхождения. У эволюционно древних полиплоидных растений размеры клеток подвержены «обратной регуляции» в сторону нормальных величин несмотря на увеличение числа хромосом.

Структура клетки

Одно время клетка рассматривалась как более или менее гомогенная капелька органического вещества, которую называли протоплазмой или живой субстанцией. Этот термин устарел после того, как выяснилось, что клетка состоит из множества четко обособленных структур, получивших название клеточных органелл («маленьких органов»).

Химический состав. Обычно 70–80 % массы клетки составляет вода, в которой растворены разнообразные соли и низкомолекулярные органические соединения. Наиболее характерные компоненты клетки – белки и нуклеиновые кислоты. Некоторые белки являются структурными компонентами клетки, другие – ферментами, т.е. катализаторами, определяющими скорость и направление протекающих в клетках химических реакций. Нуклеиновые кислоты служат носителями наследственной информации, которая реализуется в процессе внутриклеточного синтеза белков.

Часто клетки содержат некоторое количество запасных веществ, служащих пищевым резервом. Растительные клетки в основном запасают крахмал – полимерную форму углеводов. В клетках печени и мышц запасается другой углеводный полимер – гликоген. К часто запасаемым продуктам относится также жир, хотя некоторые жиры выполняют иную функцию, а именно служат важнейшими структурными компонентами. Белки в клетках (за исключением клеток семян) обычно не запасаются.

Описать типичный состав клетки не представляется возможным прежде всего потому, что существуют большие различия в количестве запасаемых продуктов и воды. В клетках печени содержится, например, 70% воды, 17% белков, 5% жиров, 2% углеводов и 0,1% нуклеиновых кислот; оставшиеся 6% приходятся на соли и низкомолекулярные органические соединения, в частности аминокислоты. Растительные клетки обычно содержат меньше белков, значительно больше углеводов и несколько больше воды; исключение составляют клетки, находящиеся в состоянии покоя. Покоящаяся клетка пшеничного зерна, являющегося источником питательных веществ для зародыша, содержит ок. 12% белков (в основном это запасаемый белок), 2% жиров и 72% углеводов. Количество воды достигает нормального уровня (70–80%) только в начале прорастания зерна.

Главные части клетки. Некоторые клетки, в основном растительные и бактериальные, имеют наружную клеточную стенку. У высших растений она состоит из целлюлозы. Стенка окружает собственно клетку, защищая ее от механических воздействий. Клетки, в особенности бактериальные, могут также секретировать слизистые вещества, образуя тем самым вокруг себя капсулу, которая, как и клеточная стенка, выполняет защитную функцию.

Именно с разрушением клеточных стенок связана гибель многих бактерий под действием пенициллина. Дело в том, что внутри бактериальной клетки концентрация солей и низкомолекулярных соединений очень высока, а потому в отсутствие укрепляющей стенки вызванный осмотическим давлением приток воды в клетку может привести к ее разрыву. Пенициллин, препятствующий во время роста клетки формированию ее стенки, как раз и приводит к разрыву (лизису) клетки.

Клеточные стенки и капсулы не участвуют в метаболизме, и часто их удается отделить, не убивая клетку. Таким образом, их можно считать наружными вспомогательными частями клетки. У клеток животных клеточные стенки и капсулы, как правило, отсутствуют.

Собственно клетка состоит из трех основных частей. Под клеточной стенкой, если она имеется, находится клеточная мембрана. Мембрана окружает гетерогенный материал, называемый цитоплазмой. В цитоплазму погружено круглое или овальное ядро. Ниже мы рассмотрим более подробно структуру и функции этих частей клетки.

Клеточная мембрана

Клеточная мембрана – очень важная часть клетки. Она удерживает вместе все клеточные компоненты и разграничивает внутреннюю и наружную среду. Кроме того, модифицированные складки клеточной мембраны образуют многие органеллы клетки.

Клеточная мембрана представляет собой двойной слой молекул (бимолекулярный слой, или бислой). В основном это молекулы фосфолипидов и других близких к ним веществ. Липидные молекулы имеют двойственную природу, проявляющуюся в том, как они ведут себя по отношению к воде. Головы молекул гидрофильные, т.е. обладают сродством к воде, а их углеводородные хвосты гидрофобны. Поэтому при смешивании с водой липиды образуют на ее поверхности пленку, аналогичную пленке масла; при этом все их молекулы ориентированы одинаково: головы молекул – в воде, а углеводородные хвосты – над ее поверхностью.

В клеточной мембране два таких слоя, и в каждом из них головы молекул обращены наружу, а хвосты – внутрь мембраны, один к другому, не соприкасаясь таким образом с водой. Толщина такой мембраны ок. 7 нм. Кроме основных липидных компонентов, она содержит крупные белковые молекулы, которые способны «плавать» в липидном бислое и расположены так, что одна их сторона обращена внутрь клетки, а другая соприкасается с внешней средой. Некоторые белки находятся только на наружной или только на внутренней поверхности мембраны или лишь частично погружены в липидный бислой.

Основная функция клеточной мембраны заключается в регуляции переноса веществ в клетку и из клетки. Поскольку мембрана физически в какой-то мере похожа на масло, вещества, растворимые в масле или в органических растворителях, например эфир, легко проходят сквозь нее. То же относится и к таким газам, как кислород и диоксид углерода. В то же время мембрана практически непроницаема для большинства водорастворимых веществ, в частности для сахаров и солей. Благодаря этим свойствам она способна поддерживать внутри клетки химическую среду, отличающуюся от наружной. Например, в крови концентрация ионов натрия высокая, а ионов калия – низкая, тогда как во внутриклеточной жидкости эти ионы присутствуют в обратном соотношении. Аналогичная ситуация характерна и для многих других химических соединений.

Очевидно, что клетка тем не менее не может быть полностью изолирована от окружающей среды, так как должна получать вещества, необходимые для метаболизма, и избавляться от его конечных продуктов. К тому же липидный бислой не является полностью непроницаемым даже для водорастворимых веществ, а пронизывающие его т.н. «каналообразующие» белки создают поры, или каналы, которые могут открываться и закрываться (в зависимости от изменения конформации белка) и в открытом состоянии проводят определенные иона (Na+, K+, Ca2+) по градиенту концентрации. Следовательно, разница концентраций внутри клетки и снаружи не может поддерживаться исключительно за счет малой проницаемости мембраны. На самом деле в ней имеются белки, выполняющие функцию молекулярного «насоса»: они транспортируют некоторые вещества как внутрь клетки, так и из нее, работая против градиента концентрации. В результате, когда концентрация, например, аминокислот внутри клетки высокая, а снаружи низкая, аминокислоты могут тем не менее поступать из внешней среды во внутреннюю. Такой перенос называется активным транспортом, и на него затрачивается энергия, поставляемая метаболизмом. Мембранные насосы высокоспецифичны: каждый из них способен транспортировать либо только ионы определенного металла, либо аминокислоту, либо сахар. Специфичны также и мембранные ионные каналы.

Такая избирательная проницаемость физиологически очень важна, и ее отсутствие – первое свидетельство гибели клетки. Это легко проиллюстрировать на примере свеклы. Если живой корень свеклы погрузить в холодную воду, то он сохраняет свой пигмент; если же свеклу кипятить, то клетки погибают, становятся легко проницаемыми и теряют пигмент, который и окрашивает воду в красный цвет.

Крупные молекулы типа белковых клетка может «заглатывать». Под влиянием некоторых белков, если они присутствуют в жидкости, окружающей клетку, в клеточной мембране возникает впячивание, которое затем смыкается, образуя пузырек – небольшую вакуоль, содержащую воду и белковые молекулы; после этого мембрана вокруг вакуоли разрывается, и содержимое попадает внутрь клетки. Такой процесс называется пиноцитозом (буквально «питье клетки»), или эндоцитозом.

Более крупные частички, например частички пищи, могут поглощаться аналогичным образом в ходе т.н. фагоцитоза. Как правило, вакуоль, образующаяся при фагоцитозе, крупнее, и пища переваривается ферментами лизосом внутри вакуоли до разрыва окружающей ее мембраны. Такой тип питания характерен для простейших, например для амеб, поедающих бактерий. Однако способность к фагоцитозу свойственна и клеткам кишечника низших животных, и фагоцитам – одному из видов белых кровяных клеток (лейкоцитов) позвоночных. В последнем случае смысл этого процесса заключается не в питании самих фагоцитов, а в разрушении ими бактерий, вирусов и другого инородного материала, вредного для организма.

Функции вакуолей могут быть и другими. Например, простейшие, живущие в пресной воде, испытывают постоянный осмотический приток воды, так как концентрация солей внутри клетки гораздо выше, чем снаружи. Они способны выделять воду в специальную экскретирующую (сократительную) вакуоль, которая периодически выталкивает свое содержимое наружу.

В растительных клетках часто имеется одна большая центральная вакуоль, занимающая почти всю клетку; цитоплазма при этом образует лишь очень тонкий слой между клеточной стенкой и вакуолью. Одна из функций такой вакуоли – накопление воды, позволяющее клетке быстро увеличиваться в размерах. Эта способность особенно необходима в период, когда растительные ткани растут и образуют волокнистые структуры.

В тканях в местах плотного соединения клеток их мембраны содержат многочисленные поры, образованные пронизывающими мембрану белками – т.н. коннексонами. Поры прилежащих клеток располагаются друг против друга, так что низкомолекулярные вещества могут перегодить из клетки в клетку – эта химическая система коммуникации координирует их жизнедеятельность. Один из примеров такой координации – наблюдаемое во многих тканях более или менее синхронное деление соседних клеток.

Цитоплазма

В цитоплазме имеются внутренние мембраны, сходные с наружной и образующие органеллы различного типа. Эти мембраны можно рассматривать как складки наружной мембраны; иногда внутренние мембраны составляют единое целое с наружной, но часто внутренняя складка отшнуровывается, и контакт с наружной мембраной прерывается. Однако даже в случае сохранения контакта внутренняя и наружная мембраны не всегда химически идентичны. В особенности различается состав мембранных белков в разных клеточных органеллах.

Эндоплазматический ретикулум. Состоящая из канальцев и пузырьков сеть внутренних мембран тянется от поверхности клетки до ядра. Эта сеть называется эндоплазматическим ретикулумом. Часто отмечалось, что канальцы открываются на поверхности клетки, и эндоплазматический ретикулум, таким образом, играет роль микроциркуляторного аппарата, через который внешняя среда может непосредственно взаимодействовать со всем содержимым клетки. Такое взаимодействие было обнаружено в некоторых клетках, в частности в мышечных, но пока не ясно, является ли оно универсальным. Во всяком случае транспорт ряда веществ по этим канальцам из одной части клетки в другую действительно происходит.

Крошечные тельца, называемые рибосомами, покрывают поверхность эндоплазматического ретикулума, особенно вблизи ядра. Диаметр рибосом ок. 15 нм, они состоят наполовину из белков, наполовину из рибонуклеиновых кислот. Их основная функция – синтез белков; к их поверхности прикрепляются матричная (информационная) РНК и аминокислоты, связанные с транспортными РНК. Участки ретикулума, покрытые рибосомами, называют шероховатым эндоплазматическим ретикулумом, а лишенные их – гладким. Кроме рибосом, на эндоплазматическом ретикулуме адсорбированы или иным образом к нему присоединены различные ферменты, в том числе системы ферментов, обеспечивающих использование кислорода для образования стеролов и для обезвреживания некоторых ядов. В неблагоприятных условиях эндоплазматический ретикулум быстро дегенерирует, и поэтому его состояние служит чувствительным индикатором здоровья клетки.

Аппарат Гольджи. Аппарат Гольджи (комплекс Гольджи) – это специализированная часть эндоплазматического ретикулума, состоящая из собранных в стопки плоских мембранных мешочков. Он участвует в секреции клеткой белков (в нем происходит упаковка секретируемых белков в гранулы) и поэтому особенно развит в клетках, выполняющих секреторную функцию. К важным функциям аппарата Гольджи относится также присоединение углеводных групп к белкам и использование этих белков для построения клеточной мембраны и мембраны лизосом. У некоторых водорослей в аппарате Гольджи осуществляется синтез волокон целлюлозы.

Лизосомы – это маленькие, окруженные одинарной мембраной пузырьки. Они отпочковываются от аппарата Гольджи и, возможно, от эндоплазматического ретикулума. Лизосомы содержат разнообразные ферменты, которые расщепляют крупные молекулы, в частности белковые. Из-за своего разрушительного действия эти ферменты как бы «заперты» в лизосомах и высвобождаются только по мере надобности. Так, при внутриклеточном пищеварении ферменты выделяются из лизосом в пищеварительные вакуоли. Лизосомы бывают необходимы и для разрушения клеток; например, во время превращения головастика во взрослую лягушку высвобождение лизосомных ферментов обеспечивает разрушение клеток хвоста. В данном случае это нормально и полезно для организма, но иногда такое разрушение клеток носит патологический характер. Например, при вдыхании асбестовой пыли она может проникнуть в клетки легких, и тогда происходит разрыв лизосом, разрушение клеток и развивается легочное заболевание.

Митохондрии и хлоропласты. Митохондрии – относительно крупные мешковидные образования с довольно сложной структурой. Они состоят из матрикса, окруженного внутренней мембраной, межмембранного пространства и наружной мембраны. Внутренняя мембрана сложена в складки, называемые кристами. На кристах размещаются скопления белков. Многие из них – ферменты, катализирующие окисление продуктов распада углеводов; другие катализируют реакции синтеза и окисления жиров. Вспомогательные ферменты, участвующие в этих процессах, растворены в матриксе митохондрий.

В митохондриях протекает окисление органических веществ, сопряженное с синтезом аденозинтрифосфата (АТФ). Распад АТФ с образованием аденозиндифосфата (АДФ) сопровождается выделением энергии, которая расходуется на различные процессы жизнедеятельности, например на синтез белков и нуклеиновых кислот, транспорт веществ внутрь клетки и из нее, передачу нервных импульсов или мышечное сокращение. Митохондрии, таким образом, являются энергетическими станциями, перерабатывающими «топливо» – жиры и углеводы – в такую форму энергии, которая может быть использована клеткой, а следовательно, и организмом в целом.

Растительные клетки тоже содержат митохондрии, но основной источник энергии для yих клеток – свет. Световая энергия используется этими клетками для образования АТФ и синтеза углеводов из диоксида углерода и воды. Хлорофилл – пигмент, аккумулирующий световую энергию, – находится в хлоропластах. Хлоропласты, подобно митохондриям, имеют внутреннюю и наружную мембраны. Из выростов внутренней мембраны в процессе развития хлоропластов возникают т.н. тилакоидные мембраны; последние образуют уплощенные мешочки, собранные в стопки наподобие столбика монет; эти стопки, называемые гранами, содержат хлорофилл. Кроме хлорофилла, в хлоропластах имеются и все другие компоненты, необходимые для фотосинтеза.

Некоторые специализированные хлоропласты не осуществляют фотосинтез, а несут другие функции, например обеспечивают запасание крахмала или пигментов.

Относительная автономия. В некоторых отношениях митохондрии и хлоропласты ведут себя как автономные организмы. Например, так же, как и сами клетки, которые возникают только из клеток, митохондрии и хлоропласты образуются только из предсуществующих митохондрий и хлоропластов. Это было продемонстрировано в опытах на растительных клетках, у которых образование хлоропластов подавляли антибиотиком стрептомицином, и на клетках дрожжей, где образование митохондрий подавляли другими препаратами. После таких воздействий клетки уже никогда не восстанавливали отсутствующие органеллы. Причина в том, что митохондрии и хлоропласты содержат определенное количество собственного генетического материала (ДНК), который кодирует часть их структуры. Если эта ДНК утрачивается, что и происходит при подавлении образования органелл, то структура не может быть воссоздана. Оба типа органелл имеют свою собственную белок-синтезирующую систему (рибосомы и транспортные РНК), которая несколько отличается от основной белок-синтезирующей системы клетки; известно, например, что белок-синтезирующая система органелл может быть подавлена с помощью антибиотиков, тогда как на основную систему они не действуют.

ДНК органелл ответственна за основную часть внехромосомной, или цитоплазматической, наследственности. Внехромосомная наследственность не подчиняется менделевским законам, так как при делении клетки ДНК органелл передается дочерним клеткам иным путем, нежели хромосомы. Изучение мутаций, которые происходят в ДНК органелл и ДНК хромосом, показало, что ДНК органелл отвечает лишь за малую часть структуры органелл; большинство их белков закодированы в генах, расположенных в хромосомах.

Частичная генетическая автономия рассматриваемых органелл и особенности их белок-синтезирующих систем послужили основой для предположения, что митохондрии и хлоропласты произошли от симбиотических бактерий, которые поселились в клетках 1–2 млрд. лет назад. Современным примером такого симбиоза могут служить мелкие фотосинтезирующие водjросли, которые живут внутри клеток некоторых кораллов и моллюсков. Водоросли обеспечивают своих хозяев кислородом, а от них получают питательные вещества.

Фибриллярные структуры. Цитоплазма клетки представляет собой вязкую жидкость, поэтому можно ожидать, что из-за поверхностного натяжения клетка должна иметь сферическую форму, за исключением тех случаев, когда клетки плотно упакованы. Однако обычно этого не наблюдается. Многие простейшие имеют плотные покровы или оболочки, которые придают клетке определенную, несферическую форму. Тем не менее даже без оболочки клетки могут поддерживать несферическую форму из-за того, что цитоплазма структурируется с помощью многочисленных, довольно жестких, параллельно расположенных волокон. Последние образованы полыми микротрубочками, которые состоят из белковых единиц, организованных в виде спирали.

Некоторые простейшие образуют псевдоподии – длинные тонкие цитоплазматические выросты, которыми они захватывают пищу. Псевдоподии сохраняют свою форму благодаря жесткости микротрубочек. Если гидростатическое давление возрастает примерно до 100 атмосфер, микротрубочки распадаются и клетка приобретает форму капли. Когда же давление возвращается к норме, вновь идет сборка микротрубочек и клетка образует псевдоподии. Сходным образом на изменение давления реагируют и многие другие клетки, что подверждает участие микротрубочек в сохранении формы клетки. Сборка и распад микротрубочек, необходимые для того, чтобы клетка могла быстро менять форму, происходят и в отсутствие изменений давления.

Из микротрубочек формируются также фибриллярные структуры, служащие органами движения клетки. У некоторых клеток имеются бичевидные выросты, называемые жгутиками, или же реснички – их биение обеспечивает движение клетки в воде. Если клетка неподвижна, эти структуры гонят воду, частицы пищи и другие частицы к клетке или от клетки. Жгутики относительно крупные, и обычно клетка имеет только один, изредка несколько жгутиков. Реснички гораздо мельче и покрывают всю поверхность клетки. Хотя эти структуры свойственны главным образом простейшим, они могут присутствовать и у высокоорганизованных форм. В человеческом организме ресничками выстланы все дыхательные пути. Попадающие в них небольшие частички обычно улавливаются слизью на клеточной поверхности, и реснички продвигают их вместе со слизью наружу, защищая таким образом легкие. Мужские половые клетки большинства животных и некоторых низших растений движутся с помощью жгутика.

Существуют и другие типы клеточного движения. Один из них – амебоидное движение. Амеба, а также некоторые клетки многоклеточных организмов «перетекают» с места на место, т.е. движутся за счет тока содержимого клетки. Постоянный ток вещества существует и внутри растительных клеток, однако он не влечет за собой передвижения клетки в целом. Наиболее изученный тип клеточного движения – сокращение мышечных клеток; оно осуществляется путем скольжения фибрилл (белковых нитей) относительно друг друга, что приводит к укорочению клетки.

Ядро

Ядро окружено двойной мембраной. Очень узкое (порядка 40 нм) пространство между двумя мембранами называется перинуклеарным. Мембраны ядра переходят в мембраны эндоплазматического ретикулума, а перинуклеарное пространство открывается в ретикулярное. Обычно ядерная мембрана имеет очень узкие поры. По-видимому, через них осуществляется перенос крупных молекул, таких, как информационная РНК, которая синтезируется на ДНК, а затем поступает в цитоплазму.

Основная часть генетического материала находится в хромосомах клеточного ядра. Хромосомы состоят из длинных цепей двуспиральной ДНК, к которой прикрепляются основные (т.е. обладающие щелочными свойствами) белки. Иногда в хромосомах имеется несколько идентичных цепей ДНК, лежащих рядом друг с другом, – такие хромосомы называются политенными (многонитчатыми). Число хромосом у разных видов неодинаково. Диплоидные клетки тела человека содержат 46 хромосом, или 23 пары.

В неделящейся клетке хромосомы прикреплены в одной или нескольких точках к ядерной мембране. В обычном неспирализованном состоянии хромосомы настолько тонки, что не видны в световой микроскоп. На определенных локусах (участках) одной или нескольких хромосом формируется присутствующее в ядрах большинства клеток плотное тельце – т.н. ядрышко. В ядрышках происходит синтез и накопление РНК, используемой для построения рибосом, а также некоторых других типов РНК.

Деление клетки

Хотя все клетки появляются путем деления предшествующей клетки, не все они продолжают делиться. Например, нервные клетки мозга, однажды возникнув, уже не делятся. Их количество постепенно уменьшается; поврежденные ткани мозга не способны восстанавливаться путем регенерации. Если же клетки продолжают делиться, то им свойствен клеточный цикл, состоящий из двух основных стадий: интерфазы и митоза.

Сама интерфаза состоит из трех фаз: G1, S и G2. Ниже указана их продолжительность, типичная для растительных и животных клеток.

G1 (4–8 ч). Это фаза начинается сразу после рождения клетки. На протяжении фазы G1 клетка, за исключением хромосом (которые не изменяются), увеличивает свою массу. Если клетка в дальнейшем не делится, то остается в этой фазе.

S (6–9 ч). Масса клетки продолжает увеличиваться, и происходит удвоение (дупликация) хромосомной ДНК. Тем не менее хромосомы остаются одинарными по структуре, хотя и удвоенными по массе, так как две копии каждой хромосомы (хроматиды) все еще соединены друг с другом по всей длине.

G2. Масса клетки продолжает увеличиваться до тех пор, пока она приблизительно вдвое не превысит начальную, а затем наступает митоз.

МИТОЗ

После того как хромосомы удвоились, каждая из дочерних клеток должна получить полный набор хромосом. Простое деление клетки не может этого обеспечить – такой результат достигается посредством процесса, называемого митозом. Если не вдаваться в детали, то началом этого процесса следует считать выстраивание хромосом в экваториальной плоскости клетки. Затем каждая хромосома продольно расщепляется на две хроматиды, которые начинают расходиться в противоположных направлениях, становясь самостоятельными хромосомами. В итоге на двух концах клетки располагается по полному набору хромосом. Далее клетка делится на две, и каждая дочерняя клетка получает полный набор хромосом.

Ниже приводится описание митоза в типичной животной клетке. Его принято разделять на четыре стадии.

I. Профаза. Особая клеточная структура – центриоль – удваивается (иногда это удвоение происходит в S-периоде интерфазы), и две центриоли начинают расходиться к противоположным полюсам ядра. Ядерная мембрана разрушается; одновременно специальные белки объединяются (агрегируют), формируя микротрубочки в виде нитей. Центриоли, расположенные теперь на противоположных полюсах клетки, оказывают организующее воздействие на микротрубочки, которые в результате выстраиваются радиально, образуя структуру, напоминающую по внешнему виду цветок астры («звезда»). Другие нити из микротрубочек протягиваются от одной центриоли к другой, образуя т.н. веретено деления. В это время хромосомы находятся в спирализованном состоянии, напоминая пружину. Они хорошо видны в световом микроскопе, особенно после окрашивания. В профазе хромосомы расщепляются, но хроматиды все еще остаются скрепленными попарно в зоне центромеры – хромосомной органеллы, сходной по функциям с центриолью. Центромеры тоже оказывают организующее воздействие на нити веретена, которые теперь тянутся от центриоли к центромере и от нее к другой центриоли.

II. Метафаза. Хромосомы, до этого момента расположенные беспорядочно, начинают двигаться, как бы влекомые нитями веретена, прикрепленными к их центромерам, и постепенно выстраиваются в одной плоскости в определенном положении и на равном расстоянии от обоих полюсов. Лежащие в одной плоскости центромеры вместе с хромосомами образуют т.н. экваториальную пластинку. Центромеры, соединяющие пары хроматид, делятся, после чего сестринские хромосомы полностью разъединяются.

III. Анафаза. Хромосомы каждой пары движутся в противоположных направлениях к полюсам, их как бы тащат нити веретена. При этом образуются нити и между центромерами парных хромосом.

IV. Телофаза. Как только хромосомы приближаются к противоположным полюсам, сама клетка начинает делиться вдоль плоскости, в которой находилась экваториальная пластинка. В итоге образуются две клетки. Нити веретена разрушаются, хромосомы раскручиваются и становятся невидимыми, вокруг них формируется ядерная мембрана. Клетки возвращаются в фазу G1 интерфазы. Весь процесс митоза занимает около часа.

Детали митоза несколько варьируют в разных типах клеток. В типичной растительной клетке образуется веретено, но отсутствуют центриоли. У грибов митоз происходит внутри ядра, без предшествующего распада ядерной мембраны.

Деление самой клетки, называемое цитокинезом, не имеет жесткой связи с митозом. Иногда один или несколько митозов проходят без клеточного деления; в результате образуются многоядерные клетки, часто встречающиеся у водорослей. Если из яйцеклетки морского ежа удалить путем микроманипуляций ядро, то веретено после этого продолжает формироваться и яйцеклетка продолжает делиться. Это показывает, что наличие хромосом не является необходимым условием для деления клетки.

Размножение с помощью митоза называют бесполым размножением, вегетативным размножением или клонированием. Его наиболее важный аспект – генетический: при таком размножении не происходит расхождения наследственных факторов у потомства. Образующиеся дочерние клетки генетически в точности такие же, как и материнская. Митоз – это единственный способ самовоспроизведения у видов, не имеющих полового размножения, например у многих одноклеточных. Тем не менее даже у видов с половым размножением клетки тела делятся посредством митоза и происходят от одной клетки – оплодотворенного яйца, а потому все они генетически идентичны. Высшие растения могут размножаться бесполым путем (с помощью митоза) саженцами и усами (известный пример – клубника).

Мейоз

Половое размножение организмов осуществляется с помощью специализированных клеток, т.н. гамет, – яйцеклетки (яйца) и спермия (сперматозоида). Гаметы, сливаясь, образуют одну клетку – зиготу. Каждая гамета гаплоидна, т.е. имеет по одному набору хромосом. Внутри набора все хромосомы разные, однако каждой хромосоме яйцеклетки соответствует одна из хромосом спермия. Зигота, таким образом, содержит уже пару таких соответствующих друг другу хромосом, которые называют гомологичными. Гомологичные хромосомы сходны, поскольку имеют одни и те же гены или их варианты (аллели), определяющие специфические признаки. Например, одна из парных хромосом может иметь ген, кодирующий группу крови А, а другая – его вариант, кодирующий группу крови В. Хромосомы зиготы, происходящие из яйцеклетки, являются материнскими, а происходящие из спермия – отцовскими.

В результате многократных митотических делений из образовавшейся зиготы возникает либо многоклеточный организм, либо многочисленные свободноживущие клетки, как это происходит у обладающих половым размножением простейших и у одноклеточных водорослей.

При образовании гамет диплоидный набор хромосом, имевшийся у зиготы, должен наполовину уменьшиться (редуцироваться). Если бы этого не происходило, то в каждом поколении слияние гамет приводило бы к удвоению набора хромосом. Редукция до гаплоидного числа хромосом происходит в результате редукционного деления – т.н. мейоза, который представляет собой вариант митоза.

Расщепление и рекомбинация. Особенность мейоза состоит в том, что при клеточном делении экваториальную пластинку образуют пары гомологичных хромосом, а не удвоенные индивидуальные хромосомы, как при митозе. Парные хромосомы, каждая из которых осталась одинарной, расходятся к противоположным полюсам клетки, клетка делится, и в результате дочерние клетки получают половинный, по сравнению с зиготой, набор хромосом.

Для примера предположим, что гаплоидный набор состоит из двух хромосом. В зиготе (и соответственно во всех клетках организма, продуцирующего гаметы) присутствуют материнские хромосомы А и В и отцовские А" и В". Во время мейоза они могут разделиться следующим образом:

[image]

Наиболее важен в этом примере тот факт, что при расхождении хромосом вовсе не обязательно образуется исходный материнский и отцовский набор, а возможна рекомбинация генов, как в гаметах АВ" и А"В в приведенной схеме.

Теперь предположим, что пара хромосом АА" содержит два аллеля – a и b – гена, определяющего группы крови А и В. Сходным образом пара хромосом ВВ" содержит аллели m и n другого гена, определяющего группы крови M и N. Разделение этих аллелей может идти следующим образом:

[image]

Очевидно, что получившиеся гаметы могут содержать любую из следующих комбинаций аллелей двух генов: am, bn, bm или an.

Если имеется большее число хромосом, то пары аллелей будут расщепляться независимо по тому же принципу. Это означает, что одни и те же зиготы могут продуцировать гаметы с различными комбинациями аллелей генов и давать начало разным генотипам в потомстве.

Мейотическое деление. Оба приведенных примера иллюстрируют принцип мейоза. На самом деле мейоз – значительно более сложный процесс, так как включает два последовательных деления. Главное в мейозе то, что хромосомы удваиваются только один раз, тогда как клетка делится дважды, в результате чего происходит редукция числа хромосом и диплоидный набор превращается в гаплоидный.

Во время профазы первого деления гомологичные хромосомы конъюгируют, т. е. сближаются попарно. В результате этого очень точного процесса каждый ген оказывается напротив своего гомолога на другой хромосоме. Обе хромосомы затем удваиваются, но хроматиды остаются связанными одна с другой общей центромерой.

В метафазе четыре соединенные хроматиды выстраиваются, образуя экваториальную пластинку, как если бы они были одной удвоенной хромосомой. В противоположность тому, что происходит при митозе, центромеры не делятся. В результате каждая дочерняя клетка получает пару хроматид, все еще связанных цетромерой. Во время второго деления хромосомы, уже индивидуальные, опять выстраиваются, образуя, как и в митозе, экваториальную пластинку, но их удвоения при этом делении не происходит. Затем центромеры делятся, и каждая дочерняя клетка получает одну хроматиду.

Деление цитоплазмы. В результате двух мейотических делений диплоидной клетки образуются четыре клетки. При образовании мужских половых клеток получается четыре спермия примерно одинаковых размеров. При образовании же яйцеклеток деление цитоплазмы происходит очень неравномерно: одна клетка остается крупной, тогда как остальные три настолько малы, что их почти целиком занимает ядро. Эти мелкие клетки, т.н. полярные тельца, служат лишь для размещения избытка хромосом, образовавшихся в результате мейоза. Основная часть цитоплазмы, необходимой для зиготы, остается в одной клетке – яйцеклетке.

Конъюгация и кроссинговер. Во время конъюгации хроматиды гомологичных хромосом могут разрываться и затем соединяться в новом порядке, обмениваясь участками следующим образом:

[image]

Этот обмен участками гомологичных хромосом называется кроссинговером (перекрестом). Как показано выше, кроссинговер ведет к возникновению новых комбинаций аллелей сцепленных генов. Так, если исходные хромосомы имели комбинации АВ и ab, то после кроссинговера они будут содержать Ab и aB. Этот механизм появления новых генных комбинаций дополняет эффект независимой сортировки хромосом, происходящей в ходе мейоза. Различие состоит в том, что кроссинговер разделяет гены одной и той же хромосомы, тогда как независимая сортировка разделяет только гены разных хромосом.

Чередование поколений

В принципе, и гаплоидные, и диплоидные клетки способны размножаться посредством митоза и давать начало взрослым особям. Однако у большинства животных, включая человека, только диплоидные клетки, возникшие в результате деления зиготы, формируют взрослую особь. У наземных растений такую функцию выполняют и гаплоидные, и диплоидные клетки. Поскольку при этом гаплоидное поколение чередуется с диплоидным, данное явление получило название чередования поколений. У мхов и мохообразных (Bryophyta) доминантным является гаплоидное поколение, хотя диплоидное тоже довольно хорошо развито и обычно паразитирует на гаплоидном. У высших наземных растений (Tracheophyta) диплоидное поколение доминирует, а гаплоидное очень редуцировано и представлено пыльцой и семяпочками.

Примитивные клетки: прокариоты

Все изложенное выше относится к клеткам растений, животных, простейших и одноклеточных водорослей, в совокупности называемых эукариотами. Эукариоты эволюционировали из более простой формы – прокариотов, которые в настоящее время представлены бактериями, включая архебактерий и цианобактерий (последних раньше называли синезелеными водорослями). В сравнении с клетками эукариотов прокариотические клетки мельче и имеют меньше клеточных органелл. У них есть клеточная мембрана, но отсутствует эндоплазматический ретикулум, а рибосомы свободно плавают в цитоплазме. Митохондрии отсутствуют, но окислительные ферменты обычно прикреплены к клеточной мембране, которая таким образом становится эквивалентом митохондрий. Прокариоты лишены также хлоропластов, а хлорофилл, если он имеется, присутствует в виде очень мелких гранул.

Прокариоты не имеют окруженного мембраной ядра, хотя место расположения ДНК можно выявить по его оптической плотности. Эквивалентом хромосомы служит цепочка ДНК, обычно кольцевая, с намного меньшим количеством прикрепленных белков. Цепочка ДНК в одной точке прикрепляется к клеточной мембране. Митоз у прокариотов отсутствует. Его заменяет следующий процесс: ДНК удваивается, после чего клеточная мембрана начинает расти между соседними точками прикрепления двух копий молекулы ДНК, которые в результате этого постепенно расходятся. В конечном итоге клетка делится между точками прикрепления молекул ДНК, образуя две клетки, каждая со своей копией ДНК.

Дифференцировка клетки

Многоклеточные растения и животные эволюционировали из одноклеточных организмов, клетки которых после деления оставались вместе, образуя колонию. Изначально все клетки были идентичными, но дальнейшая эволюция породила дифференцировку. В первую очередь дифференцировались соматические клетки (т.е. клетки тела) и половые клетки. Далее дифференцировка усложнялась – возникало все больше различных клеточных типов. Онтогенез – индивидуальное развитие многоклеточного организма – повторяет в общих чертах этот эволюционный процесс (филогенез).

Физиологически клетки дифференцируются отчасти за счет усиления той или иной особенности, общей для всех клеток. Например, в мышечных клетках усиливается сократительная функция, что может быть результатом совершенствования механизма, осуществляющего амебоидное или иного типа движение в менее специализированных клетках. Аналогичный пример – тонкостенные клетки корня с их отростками, т.н. корневыми волосками, которые служат для всасывания солей и воды; в той или иной степени эта функция присуща любым клеткам. Иногда специализация связана с приобретением новых структур и функций – примером может служить развитие локомоторного органа (жгутика) у сперматозоидов.

Дифференцировка на клеточном или тканевом уровне изучена довольно подробно. Мы знаем, например, что иногда она протекает автономно, т.е. один тип клетки может превращаться в другой независимо от того, к какому типу клеток относятся соседние. Однако часто наблюдается т.н. эмбриональная индукция – явление, при котором один тип ткани стимулирует клетки другого типа дифференцироваться в заданном направлении.

В общем случае дифференцировка необратима, т.е. высокодифференцированные клетки не могут превращаться в клетки другого типа. Тем не менее это не всегда так, в особенности у растительных клеток.

Различия в структуре и функциях в конечном счете определяются тем, какие типы белков синтезируются в клетке. Поскольку синтезом белков управляют гены, а набор генов во всех клетках тела одинаков, дифференцировка должна зависеть от активации или инактивации тех или иных генов в различных типах клеток. Регуляция активности генов происходит на уровне транскрипции, т.е. образования информационной РНК с использованием ДНК в качестве матрицы. Только транскрибированные гены производят белки. Синтезируемые белки могут блокировать транскрипцию, но иногда и активируют ее. Кроме того, поскольку белки являются продуктами генов, одни гены могут контролировать транскрипцию других генов. В регуляции транскрипции участвуют также гормоны, в частности стероидные. Очень активные гены могут многократно дуплицироваться (удваиваться) для производства большего количества информационной РНК.

Развитие злокачественных образований часто рассматривалось как особый случай клеточной дифференцировки. Однако появление злокачественных клеток является результатом изменения структуры ДНК (мутации), а не процессов транскрипции и трансляции в белок нормальной ДНК.

Методы изучения клетки

Световой микроскоп. В изучении клеточной формы и структуры первым инструментом был световой микроскоп. Его разрешающая способность ограничена размерами, сравнимыми с длиной световой волны (0,4–0,7 мкм для видимого света). Однако многие элементы клеточной структуры значительно меньше по размерам.

Другая трудность состоит в том, что большинство клеточных компонентов прозрачны и коэффициент преломления у них почти такой же, как у воды. Для улучшения видимости часто используют красители, имеющие разное сродство к различным клеточным компонентам. Окрашивание применяют также для изучения химии клетки. Например, некоторые красители связываются преимущественно с нуклеиновыми кислотами и тем самым выявляют их локализацию в клетке. Небольшая часть красителей – их называют прижизненными – может быть использована для окраски живых клеток, но обычно клетки должны быть предварительно зафиксированы (с помощью веществ, коагулирующих белок) и только после этого могут быть окрашены.

Перед проведением исследования клетки или кусочки ткани обычно заливают в парафин или пластик и затем режут на очень тонкие срезы с помощью микротома. Такой метод широко используется в клинических лабораториях для выявления опухолевых клеток. Помимо обычной световой микроскопии разработаны и другие оптические методы изучения клетки: флуоресцентная микроскопия, фазово-контрастная микроскопия, спектроскопия и рентгеноструктурный анализ.

Электронный микроскоп. Электронный микроскоп имеет разрешающую способность ок. 1–2 нм. Этого достаточно для изучения крупных белковых молекул. Обычно необходимо окрашивание и контрастирование объекта солями металлов или металлами. По этой причине, а также потому, что объекты исследуются в вакууме, с помощью электронного микроскопа можно изучать только убитые клетки.

Авторадиография. Если добавить в среду радиоактивный изотоп, поглощаемый клетками в процессе метаболизма, то его внутриклеточную локализацию можно затем выявить с помощью авторадиографии. При использовании этого метода тонкие срезы клеток помещают на пленку. Пленка темнеет под теми местами, где находятся радиоактивные изотопы.

Центрифугирование. Для биохимического изучения клеточных компонентов клетки необходимо разрушить – механически, химически или ультразвуком. Высвобожденные компоненты оказываются в жидкости во взвешенном состоянии и могут быть выделены и очищены с помощью центрифугирования (чаще всего – в градиенте плотности). Обычно такие очищенные компоненты сохраняют высокую биохимическую активность.

Клеточные культуры. Некоторые ткани удается разделить на отдельные клетки так, что клетки при этом остаются живыми и часто способны к размножению. Этот факт окончательно подтверждает представление о клетке как единице живого. Губку, примитивный многоклеточный организм, можно разделить на клетки путем протирания сквозь сито. Через некоторое время эти клетки вновь соединяются и образуют губку. Эмбриональные ткани животных можно заставить диссоциировать с помощью ферментов или другими способами, ослабляющими связи между клетками.

Американский эмбриолог Р.Гаррисон (1879–1959) первым показал, что эмбриональные и даже некоторые зрелые клетки могут расти и размножаться вне тела в подходящей среде. Эта техника, называемая культивированием клеток, была доведена до совершенства французским биологом А.Каррелем (1873–1959). Растительные клетки тоже можно выращивать в культуре, однако по сравнению с животными клетками они образуют большие скопления и прочнее прикрепляются друг к другу, поэтому в процессе роста культуры образуются ткани, а не отдельные клетки. В клеточной культуре из отдельной клетки можно вырастить целое взрослое растение, например морковь.

Микрохирургия. С помощью микроманипулятора отдельные части клетки можно удалять, добавлять или каким-то образом видоизменять. Крупную клетку амебы удается разделить на три основных компонента – клеточную мембрану, цитоплазму и ядро, а затем эти компоненты можно вновь собрать и получить живую клетку. Таким путем могут быть получены искусственные клетки, состоящие из компонентов разных видов амеб.

Если принять во внимание, что некоторые клеточные компоненты представляется возможным синтезировать искусственно, то опыты по сборке искусственных клеток могут оказаться первым шагом на пути к созданию в лабораторных условиях новых форм жизни. Поскольку каждый организм развивается из одной единственной клетки, метод получения искусственных клеток в принципе позволяет конструировать организмы заданного типа, если при этом использовать компоненты, несколько отличающиеся от тех, которые имеются у ныне существующих клеток. В действительности, однако, полного синтеза всех клеточных компонентов не требуется. Структура большинства, если не всех компонентов клетки, определяется нуклеиновыми кислотами. Таким образом, проблема создания новых организмов сводится к синтезу новых типов нуклеиновых кислот и замене ими природных нуклеиновых кислот в определенных клетках.

Слияние клеток. Другой тип искусственных клеток может быть получен в результате слияния клеток одного или разных видов. Чтобы добиться слияния, клетки подвергают воздействию вирусных ферментов; при этом наружные поверхности двух клеток склеиваются вместе, а мембрана между ними разрушается, и образуется клетка, в которой два набора хромосом заключены в одном ядре. Можно слить клетки разных типов или на разных стадиях деления. Используя этот метод, удалось получить гибридные клетки мыши и цыпленка, человека и мыши, человека и жабы. Такие клетки являются гибридными лишь изначально, а после многочисленных клеточных делений теряют большинство хромосом либо одного, либо другого вида. Конечный продукт становится, например, по существу клеткой мыши, где человеческие гены отсутствуют или имеются лишь в незначительном количестве. Особый интерес представляет слияние нормальных и злокачественных клеток. В некоторых случаях гибриды становятся злокачественными, в других нет, т.е. оба свойства могут проявляться и как доминантные, и как рецессивные. Этот результат не является неожиданным, так как злокачественность может вызываться различными факторами и имеет сложный механизм.

Список литературы

Хэм А., Кормак Д. Гистология, т. 1. М., 1982
Албертс Б., Брей Д., Льюс Дж., Рэфф М., Робертс К., Уотсон Дж. Молекулярная биология клетки, т. 1. М., 1994





Похожие курсовые работы

1. Кросворд на тему химический состав клетки

2. Кросворд на тему трудове право

3. Кросворд на тему гражданское право

4. Кросворд на тему право с ответами

5. Кросворд труд и трудовая деятельность с ответими

6. Химический состав клетки кросворд

7. Кросворд по теме клеточная теория

8. Кросворд по теме государственные органы

9. Кросворд з б олог на тему

10. Кросворд трудовые отношения

11. Кросворд по охране труда

12. Кросворд по экологии для дошкольников

13. Кросворд по культуре века

14. Кросворд по уголовному праву

15. Кросворд по земельному праву

Курсовые работы, рефераты и доклады